当前位置:首页 » 证券市场 » 债券组合方差
扩展阅读
股票投资经济学 2021-06-17 16:24:20

债券组合方差

发布时间: 2021-04-21 21:25:04

⑴ 《债券》,这个题目我就郁闷了,最小方差组合不就是无风险组合吗。如果能顺带着把题目做出来的话,咱不差

我不会

⑵ 如何估计任意一个投资组合的均值与方差

任何投资者都希望投资获得最大的回报,但是较大的回报伴随着较大的风险。为了分散风险或减少风险,投资者投资资产组合。资产组合是使用不同的证券和其他资产构成的资产集合,目的是在适当的风险水平下通过多样化获得最大的预期回报,或者获得一定的预期回报使用风险最小。
作为风险测度的方差是回报相对于它的预期回报的离散程度。资产组合的方差不仅和其组成证券的方差有关,同时还有组成证券之间的相关程度有关。为了说明这一点,必须假定投资收益服从联合正态分布(即资产组合内的所有资产都服从独立正态分布,它们间的协方差服从正态概率定律),投资者可以通过选择最佳的均值和方差组合实现期望效用最大化。如果投资收益服从正态分布,则均值和方差与收益和风险一一对应。
如本题所示,两个资产的预期收益率和风险根据前面所述均值和方差的公式可以计算如下:
1。股票基金
预期收益率=1/3*(-7%)+1/3*12%+1/3*28%=11%
方差=1/3[(-7%-11%)^2+(12%-11%)^2+(28%-11%)^2]=2.05%
标准差=14.3%(标准差为方差的开根,标准差的平方是方差)
2。债券基金
预期收益率=1/3*(17%)+1/3*7%+1/3*(-3%)=7%
方差=1/3[(17%-7%)^2+(7%-7%)^2+(-3%-7%)^2]=0.67%
标准差=8.2%
注意到,股票基金的预期收益率和风险均高于债券基金。然后我们来看股票基金和债券基金各占百分之五十的投资组合如何平衡风险和收益。投资组合的预期收益率和方差也可根据以上方法算出,先算出投资组合在三种经济状态下的预期收益率,如下:
萧条:50%*(-7%)+50%*17%=5%
正常:50%*(12%)+50%*7%=9.5%
繁荣:50%*(28%)+50%*(-3%)=12.5%
则该投资组合的预期收益率为:1/3*5%+1/3*9.5%+1/3*12.5%=9%
该投资组合的方差为:1/3[(5%-9%)^2+(9.5%-9%)^2+(12.5%-9%)^2]=0.001%
该投资组合的标准差为:3.08%
注意到,其中由于分散投资带来的风险的降低。一个权重平均的组合(股票和债券各占百分之五十)的风险比单独的股票或债券的风险都要低。
投资组合的风险主要是由资产之间的相互关系的协方差决定的,这是投资组合能够降低风险的主要原因。相关系数决定了两种资产的关系。相关性越低,越有可能降低风险。

⑶ 投资组合的标准差代表什么含义

在投资基金上,一般人比较重视的是业绩,但往往买进了基金的算法,近期业绩表现最佳的基金之后,基金表现反而不如预期,这是因为所选基金波动度太大,没有稳定的表现。

衡量基金波动程度的工具就是标准差(Standard Deviation)。标准差是指基金可能的变动程度。标准差越大,基金未来净值可能变动的程度就越大,稳定度就越小,风险就越高。

比方说,一年期标准差是30%的基金,表示这类基金的净值在一年内可能上涨30%,但也可能下跌30%。因此,如果
有两只收益率相同的基金,投资人应该选择标准差较小的基金(承受较小的风险得到相同的收益),如果有两只相同标准差的基金,则应该选择收益较高的基金(承
受相同的风险,但是收益更高)。建议投资人同时将收益和风险计入,以此来判断基金。例如,A基金二年期的收益率为36%,标准差为18%;B基金二年期收
益率为24%,标准差为8%,从数据上看,A基金的收益高于B基金,但同时风险也大于B基金。A基金的"每单位风险收益率"为2(0.36/0.18),
而B基金为3(0.24/0.08)。因此,原先仅仅以收益评价是A基金较优,但是经过标准差即风险因素调整后,B基金反而更为优异。

另外,标准差也可以用来判断基金属性。据晨星统计,今年以来股票基金的平均标准差为5.14,积配型基金的平均标准
差为5.04;保守配置型基金的平均标准差为4.86;普通债券基金平均标准差为2.91;货币基金平均标准差则为0.19;由此可见,越是积极型的基
金,标准差越大;而如果投资人持有的基金标准差高于平均值,则表示风险较高,投资人不妨在观赏奥运比赛的同时,也检视一下手中的基金。

⑷ 资产组合的方差怎么算

资产组合是资产持有者对其持有的各种股票、债券、现金以及不动产进行的适当搭配。资产组合的目的是通过对持有资产的合理搭配,使之既能保证一定水平的盈利,又可以把投资风险降到最低限度。在证券投资中,人们总是期望收益越高越好,但是由于每种证券都有风险,因此若只考虑追求收益,资产过分集中和单一,一旦出现什么不测,遭受损失的程度就会很大。通过科学的分析和评估,将证券投资进行合理的搭配组合,就可以实现在收益最大的同时风险最小。
现代资产组合理论最初是由美国经济学家哈里·马科维茨(Markowits)于 1952年创立的,他认为最佳投资组合应当是具有风险厌恶特征的投资者的无差异曲线和资产的有效边界线的交点。威廉·夏普(Sharpe)则在其基础上提出的单指数模型,并提出以对角线模式来简化方差-协方差矩阵中的非对角线元素。他据此建立了资本资产定价模型(CAPM),
应答时间:2021-04-01,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html

⑸ 股票的组合收益率,组合方差怎么求

1.股票基金
预期收益率=1/3*(-7%)+1/3*12%+1/3*28%=11%
方差=1/3[(-7%-11%)^2+(12%-11%)^2+(28%-11%)^2]=2.05%
标准差=14.3%(标准差为方差的开根,标准差的平方是方差)
2.债券基金
预期收益率=1/3*(17%)+1/3*7%+1/3*(-3%)=7%
方差=1/3[(17%-7%)^2+(7%-7%)^2+(-3%-7%)^2]=0.67%
标准差=8.2%
注意到,股票基金的预期收益率和风险均高于债券基金.然后我们来看股票基金和债券基金各占百分之五十的投资组合如何平衡风险和收益.投资组合的预期收益率和方差也可根据以上方法算出,先算出投资组合在三种经济状态下的预期收益率,如下:
萧条:50%*(-7%)+50%*17%=5%
正常:50%*(12%)+50%*7%=9.5%
繁荣:50%*(28%)+50%*(-3%)=12.5%
则该投资组合的预期收益率为:1/3*5%+1/3*9.5%+1/3*12.5%=9%
该投资组合的方差为:1/3[(5%-9%)^2+(9.5%-9%)^2+(12.5%-9%)^2]=0.001%
该投资组合的标准差为:3.08%
注意到,其中由于分散投资带来的风险的降低.一个权重平均的组合(股票和债券各占百分之五十)的风险比单独的股票或债券的风险都要低.
投资组合的风险主要是由资产之间的相互关系的协方差决定的,这是投资组合能够降低风险的主要原因.相关系数决定了两种资产的关系.相关性越低,越有可能降低风险

⑹ 为什么相关系数越大,两种债券构成的投资组合标准差越大

通俗地讲,标准差就是风险。不要把鸡蛋放在一个篮子里,是因为篮子一掉,全部鸡蛋都会破,也可以说这些鸡蛋完全相关。如果把鸡蛋分为两堆,小明拿一半,小李拿另一半呢?如果小明和小李各走各的路,我们可以说他俩的相关系数是0,小明的篮子掉了,小李的篮子掉不掉和小明没关系。但是如果小明和小李牵着手呢,这样他俩的鸡蛋的相关系数就不是0了,至少是正相关的。想一想,小明摔了一跤,他那一半鸡蛋全破了。而小李摔没摔呢?我们不知道,但是我们可以肯定,因为小明牵着小李的手,小李也很可能会摔一跤,鸡蛋全破。至少,比小李一个人走的时候,容易破得多。这就是相关系数越大,标准差(风险)越大的原因。

⑺ 股票的组合收益率,组合方差怎么求

分散投资降低了风险(风险至少不会增加)。

1、组合预期收益率=0.5*0.1+0.5*0.3=0.2。

2、两只股票收益的协方差=-0.8*0.3*0.2=-0.048。

3、组合收益的方差=(0.5*0.2)^2+(0.5*0.3)^2+2*(-0.8)*0.5*0.5*0.3*0.2=0.0085。

4、组合收益的标准差=0.092。

组合前后发生的变化:组合收益介于二者之间;风险明显下降。

(7)债券组合方差扩展阅读:

基本特征:

最早的对中国收益率的研究应该是Jamison&Gaag在1987年发表的文章。初期的研究样本数量及所覆盖的区域都很有限,往往仅是某个城市或县的样本。而且在这些模型中,往往假设样本是同质的,模型比较简单。

在后来的研究中,样本量覆盖范围不断扩大直至全国性的样本,模型中也加入了更多的控制变量,并且考虑了样本的异质性,如按样本的不同属性分别计算了其收益率,并进行比较。

这些属性除去性别外,还包括了不同时间、地区、城镇样本工作单位属性、就业属性、时间、年龄等。下面概况了研究的主要结果。

⑻ 股票和债券的收益标准差分别为0.4和0.1,股票和债券之间的协方差为0.016,试求该组合的标准差.

这里还需要组合中股票和债券的投资比例。

这里因为楼主没有给出,所以我假设为:

⑼ 计算投资组合的标准差的公式是什么可以举个例子吗

投资组合的标准差公式是:组合标准差=(A的平方+B的平方+C的平方+2XAB+2YAC+2ZBC)的1/2次方,具体解释如下:

根据算数标准差的代数公式:(a+b+c)的平方=(a的平方+b的平方+c的平方+2ab+2ac+2bc)来推导出投资组合标准差的公式。

例如根据权重、标准差计算:

1、A证券的权重×标准差设为A。

2、B证券的权重×标准差设为B。

3、C证券的权重×标准差设为C。

确定相关系数:

1、A、B证券相关系数设为X。

2、A、C证券相关系数设为Y。

3、B、C证券相关系数设为Z。展开上述代数公式,将x、y、z代入,即可得三种证券的组合标准差=(A的平方+B的平方 +C的平方+2XAB+2YAC+2ZBC)的1/2次方。

(9)债券组合方差扩展阅读:

注意事项:

1、用标准差对收益进行风险调整,其隐含的假设就是所考察的组合构成了投资者投资的全部。因此只有在考虑在众多的基金中选择购买某一只基金时,夏普比率才能够作为一项重要的依据。

2、使用标准差作为风险指标也被人们认为不很合适的。

3、夏普比率的有效性还依赖于可以以相同的无风险利率借贷的假设。

4、夏普比率没有基准点,因此其大小本身没有意义,只有在与其他组合的比较中才有价值。