① 蒙特卡洛 模拟法 计算var 的公式是什么
VAR(Value at Risk)按字面解释就是“在险价值”,其含义指:在市场正常波动下,某一金融资产或证券组合的最大可能损失。更为确切的是指,在一定概率水平(置信度)下,某一金融资产或证券组合价值在未来特定时期内的最大可能损失。用公式表示为:
Prob(△Ρ<VAR)=1-α 其中Prob表示:资产价值损失小于可能损失上限的概率。
△Ρ表示:某一金融资产在一定持有期△t的价值损失额。
VAR表示:给定置信水平α下的在险价值,即可能的损失上限。
α为:给定的置信水平。
VAR从统计的意义上讲,本身是个数字,是指面临“正常”的市场波动时“处于风险状态的价值”。即在给定的置信水平和一定的持有期限内,预期的最大损失量(可以是绝对值,也可以是相对值)。例如,某一投资公司持有的证券组合在未来24小时内,置信度为95%,在证券市场正常波动的情况下,VaR 值为800万元。其含义是指,该公司的证券组合在一天内(24小时),由于市场价格变化而带来的最大损失超过800万元的概率为5%,平均20个交易日才可能出现一次这种情况。或者说有95%的把握判断该投资公司在下一个交易日内的损失在800万元以内。5%的机率反映了金融资产管理者的风险厌恶程度,可根据不同的投资者对风险的偏好程度和承受能力来确定。
VAR的计算系数
由上述定义出发,要确定一个金融机构或资产组合的VAR值或建立VAR的模型,必须首先确定以下三个系数:一是持有期间的长短;二是置信区间的大小;三是观察期间。
1、持有期。持有期△t,即确定计算在哪一段时间内的持有资产的最大损失值,也就是明确风险管理者关心资产在一天内一周内还是一个月内的风险价值。持有期的选择应依据所持有资产的特点来确定比如对于一些流动性很强的交易头寸往往需以每日为周期计算风险收益和VaR值,如G30小组在1993年的衍生产品的实践和规则中就建议对场外OTC衍生工具以每日为周期计算其VaR,而对一些期限较长的头寸如养老基金和其他投资基金则可以以每月为周期。
从银行总体的风险管理看持有期长短的选择取决于资产组合调整的频度及进行相应头寸清算的可能速率。巴塞尔委员会在这方面采取了比较保守和稳健的姿态,要求银行以两周即10个营业日为持有期限。
2、置信水平α。一般来说对置信区间的选择在一定程度上反映了金融机构对风险的不同偏好。选择较大的置信水平意味着其对风险比较厌恶,希望能得到把握性较大的预测结果,希望模型对于极端事件的预测准确性较高。根据各自的风险偏好不同,选择的置信区间也各不相同。比如J.P. Morgan与美洲银行选择95%,花旗银行选择95.4%,大通曼哈顿选择97.5%,Bankers Trust选择99%。作为金融监管部门的巴塞尔委员会则要求采用99%的置信区间,这与其稳健的风格是一致的。
3、第三个系数是观察期间(Observation Period)。观察期间是对给定持有期限的回报的波动性和关联性考察的整体时间长度,是整个数据选取的时间范围,有时又称数据窗口(Data Window)。例如选择对某资产组合在未来6个月,或是1年的观察期间内,考察其每周回报率的波动性(风险) 。这种选择要在历史数据的可能性和市场发生结构性变化的危险之间进行权衡。为克服商业循环等周期性变化的影响,历史数据越长越好,但是时间越长,收购兼并等市场结构性变化的可能性越大,历史数据因而越难以反映现实和未来的情况。巴塞尔银行监管委员会目前要求的观察期间为1年。
综上所述,VaR实质是在一定置信水平下经过某段持有期资产价值损失的单边临界值,在实际应用时它体现为作为临界点的金额数目。
② 当样本容量较大时,蒙特卡洛模拟多少次呢
当样本容量较大的时候,这个魔帝次数大约已经是有上限的。
③ 蒙特卡洛模拟具体步骤是什么
蒙特卡洛模拟法求解步骤应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下:
1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致
2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。
3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。
4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。
5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。
在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。
④ 随机过程,机器学习和蒙特卡洛在金融应用中都有哪些关系
随机过程 stochastic processes
泊松过程 Poisson processes
更新过程 renewal processes
布朗运动 Brownian motion
仿射(跳跃)扩散过程 affine processes (or affine-jump diffusions)
列维过程 Levy processes
连续状态分枝过程 continuous state branching processes
随机微分方程 stochastic differential equations
半鞅 semimartingale
偏微分方程 partial differential equations
偏积分-微分方程 partial integro-differential equations
倒向随机微分方程 backward stochastic differential equations
二阶倒向随机微分方程 second order backward stochastic differential equations
随机偏微分方程 stochastic partial differential equations
随机最优控制 stochastic optimal control
极值建模 modeling of extremes
风险度量 risk measures
蒙特卡洛模拟 Monte Carlo simulation
============Stochastic Processes============
Introction and References
『随机过程』(stochastic processes) 是概率论的一个分支,一般来说是特指一个学科,而『蒙特卡洛』 (Monte Carlo) 是一种获得某种统计量、待求值或函数值的方法,二者不太具有明显的并列关系或者包含与被包含关系。
随机过程从内容上来说大致有两类:
第一种我称之为应用随机过程,也是大家一般所说的随机过程,
内容包括几种具体的经典随机过程,例如:Poisson process,renewal process,discrete time and continuous time Markov chain,basics of Brownian motion,以及他们的应用,比如 queue systems 等。
相关的书籍有:
Stochastic processes, Sheldon Ross
另外一本稍微高阶书的是 Cornell University 的“李登辉”教授 (Lee Teng Hui Professor)、应用概率大牛 Sidney Resnick 所著的
Adventures in stochastic processes
第二种是指随机过程一般理论:一般包括概率论、随机过程的测度论基础 (probability space、convergence theory、limit theory、martingale theory 等),Markov process,stochastic integral, stochastic differential equations, semimartingale theory (半鞅)尤其是后者等比较艰深的概念和问题(内容参考以下书籍);
其中入门的书籍有:
Stochastic calculus for finance II, Steven Shreve
Arbitrage theory in continuous time, Tomas Bjork
这两本是与金融交互讲的;另外一本稍微偏理论的随机分析入门书籍是:
Stochastic differential equations, Bernt Oksendal
高阶数学研究生水平的书籍有:
Stochastic integrals and differential equations, Philip Protter
Brownian motion and stochastic calculus, Karatzas, Shreve
Brownian motion and continuous martingales, Revuz, Yor
Limit theorems for stochastic processes, Jacod, Shiryayev
一本比较艰深的讲套利数学的研究生读物(需要懂半鞅、泛函分析):
Mathematics of arbitrage, Delbaen, Schachermayer,
其中讲了不同模型设定下的的套利理论,包括离散模型,连续模型比如半鞅等过程驱动的市场对应的套利结论;utility maximization, convex ality 等概念。
当然,学习高级随机分析的书籍需要比较坚实的概率论基础,在此我推荐:
Probability: theory and examples, Richard Durret
Real analysis and probability, Dudley
特别地,我强烈推荐两本我当作参考文献的概率论书籍。一下两本书全面介绍了概率论基本理论,非常适合已经有一定测度背景并且想继续深入学习随机分析的读者:
Probability theory: a comprehensive course, Klenke
Foundations of modern probability, Kallenberg
Overview
『数学金融』中涉及的随机过程应该主要涵盖上述第一类里的几乎所有内容和上述第二类里的stochastic integrals, stochastic differential equations (SDE),semimartingale 等,其中实务中最常用的是 Ito process 和 Levy process;因为他们都有比较好的马尔可夫性 (Markovian structure),根据 Feynman-Kac 等定理,所以又能与 partial differential equation 和 partial integro-differential equation 联系起来。这也是期权定价的 PDE 方法。讲定价公式可以写成 PDE 的好处是可以使用现成的 PDE 数值方法。
此外,Ito processes 和 Levy processes 是特殊的 semimartingale。用 semimartingale 做金融建模的好处有两点:
1、semimartingale 作为 stochastic integrator,是从一致度量 (uniform metric) 下可料 (predictable) 被积过程所形成的空间到随机变量 (topologized by convergence in probability) 所形成的空间的连续线性映射,这种性质对应于金融资产价格的稳健性,通俗地讲就是:如果你对投资策略施加一个小小的扰动,最后投资组合的价值在某种意义下也会只有相应较小的扰动。因此用 semimartingale 模拟金融价格是合理的。
2、semimartingale 组成的空间在 Emery topology (metrizable) 下是完备的;这个性质加上一个比较符合经济逻辑的无套利假设 (No free lunch with vanishing risk, NFLVR),可以推出存在 sigma-martingale measure,反之亦然;这是目前最广义的套利定价理论,它的特殊形式是:
1、在离散模型中,无套利等价于存在等价鞅测度,
2、在 Ito processes 中,NFLVR 等价于存在等价局部鞅测度 (equivalent local martingale measure),而 NFLVR 可以推出无套利。
这里可以参考 A general version of the fundamental theorem of asset pricing, Delbaen, Schachermayer,慎入,作者均是泛函分析领域的大牛,教过无数顶尖分析和概率领域的学生,写的文章非常艰深;前者也是鄙人所在学校 ETH Zurich 概率论与金融数学组的退休教授,他们的学术成果请自行 scholar.google;笔者的老师用了大约20学时教相关的半鞅知识,20学时教这篇论文)。简而言之,用这两种随机过程模拟价格是可以满足无套利的,因此可以用鞅方法定价,这即是用这两种过程建模的好处之二。
在衍生品定价问题中,一般假设 underlying price process 服从例如上述某种随机过程,定价则是利用金融工具的复制(超复制 super-replication)等方法,在特定金融市场的假设(比如无套利,或者更特殊的假设 NFLVR;又比如自由买卖假设;假设很重要!!!)下求得一个该金融工具的无套利价格,以及对应的复制(或超复制)策略。当然(超)复制问题大概涉及两个数学问题,一个是:
optional decomposition theorem,这个定理与最广义的 FTAP 有着天然数学美感的交互;另一个是随机控制论中的 stochastic target problem,问题是如何找到一个期初价格和交易策略使得期末 payoff 被(超)复制。 总之,不论在何种方法和假设下,资产定价理论中都用随机过程模拟资产价格。
Concrete Examples
Brownian motion,这是搞金融数学不得不懂的随机过程,略,请参考:
Stochastic calculus for finance II, Steven Shreve
Poisson processes,compound Poisson processes 在金融数学中的应用之一是:在结构定价问题中,我们假设资产过程除了布朗运动驱动的部分之外,还有跳跃,而跳跃经常是由这两种过程模拟的;更一般地,我们还可以假设资产价格过程服从更广义的跳跃形式,该跳跃形式存在于 Levy processes, affine processes 或者 continuous state branching processes 中,一般称作 Levy-type jump 。 Levy processes 可以看做 weak closure of Compound Poisson processes;Levy process 区别于 Brownian motion 和 compound Poisson process 的地方在于,Levy process 还有一项 square integrable martingale,它可以理解为是 intensity 为无穷大、跳跃幅度无穷小(因此有可积性)的 compensated compound poisson,在 Ito-Levy decomposition 中,它是由可数个 compound compensated Poisson processes 组成的。在模型的微分形式中,跳跃和布朗运动驱动的部分经常是线性存在。
关于 Levy processes,请参考
Introctory lectures on fluctuations of Levy processes, Kyprianou
Levy processes and stochastic calculus, Applebaum
Renewal processes,Levy processes 经常被用于金融保险中的 Ruin 问题,鉴于这已经超越我的知识范畴,在此不详细讨论,一本可能的参考文献是:
Introctory lectures on fluctuations of Levy processes, Kyprianou
除衍生工具性定价问题,在金融控制问题中,一般也假设资产过程价格或者其他相关过程服从某种随机过程。比如在最简单的 Merton problem 中,我们假设资产价格服从多维几何布朗运动。又比如在 Jacod 和 Shiryayev 在1993年发表的关于 optimal dividend 的文章中,公司的价值服从一个带线性漂移的布朗运动减去一个左极限右连续的红利支付过程,然后用一个停时 (stopping time) 使其停止于价值首次为0的时刻。
随机过程在金融中也可以描述资产价格之外的过程。比如SDE可以描述短期利率,在此请参考
Stochastic calculus for finance II, Steven Shreve
关于伊藤过程驱动的高级利率模型,比如 affine process,请参考
Term structure models: a graate course, Damir Filipovic
随机过程还可以描述除了价格、利率之外的金融变量。比如在著名数理金融学家 Darrel Duffie 写的关于 intensity based credit risk model 的文章中(原文叫 credit risk modeling with affine processes, Duffie),假设 default intensity 服从 affine process,则可违约债券定价形式与短期利率下的债券定价有相同的形式和计算方法,只是将短期利率改写成违约强度而已。
关于 affine process,请参考
Affine process and applications in finance, Duffie, Filipovic, Schachermayer
Transform analysis and asset pricing for Affine jump-diffusions, Duffie, Pan, Singleton
以及以上文到的那本讲 Term structure 的书:
Term structure models: a graate course, Damir Filipovic
在KMV模型中,假设公司价值服从某个随机过程,比如几何布朗运动。
以上这两种随机过程在信用风险中的应用均可以在 Darrel Duffie 的书 Credit Risk: Pricing, Measurement, and Management 中找到。
随机过程也可以描述衍生金融工具的价格。比如我们知道欧式期权的 payoff (在这里是期末价值),同时知道 underlying asset price process,我们可以论证欧式期权的价格过程满足倒向随机微分方程 (BSDE);如果underlying asset price processes 满足 Markovian structure,则该 BSDE为一个前向-倒向随机微分方程 (FBSDE);其中方程期末条件是 payoff,方程生成元 (generator) 与 underlying price 相关;方程有一对解,第一个解是期权价格过程,第二个解则对应欧式期权在该市场下的复制策略。如果假设 underlying process 是几何布朗运动,则该 BSDE 为线性 BSDE,其解的形式就是欧式期权的定价公式:风险中性测度下期末值贴现的期望。
相关文献请参考:
Backward stochastic differential equations in finance: Karoui, Peng, Quenez
类似地,BSDE也可以描述效用,称作随机微分效用 (stochastic differential utility),可以参考:
Stochastic differential utility, Duffie, Epstein
此外 Marek Musiela,Rama Cont,Tomas Bjork,Rene Carmona 等人也尝试过用随机偏微分方程 (stochastic partial differential equations,可以近似理解为用无穷维随机微分方程或 Banach 空间取值的随机微分方程) ;用 SPDE 建模就是用 SPDE 来模拟一个取值为连续函数的 forward rate curve 演化过程。
这应该就是 Heath-Jarrow-Morton-Musiela,请参考:
Stochastic PDEs and term structure models, Musiela
Towards a general theory of bond markets,Tomas Bjork, et al
Modeling term structure dynamics: an infinite dimensional approach, Rama Cont
Interest rate models: an infinite dimensional stochastic analysis perspective, Rene Carmona
当时实务中并不需要这么多高深的数学知识。只要能明白概率论,应用随机过程,随机分析(基本内容一般包括 stochastic integral, SDE,特别是与 Ito processes 相关的内容)就能看懂绝大多数常用模型了。
如果是做金融数学学术,则额外还需要专攻以下方向中的一个或多个: Levy process, affine process, backward stochastic differential equations, semimartingale, stochastic control, stochastic differential games, stochastic PDE, 等。
除了概率论,金融相关的数学还涉及偏微分方程(及黏性解),控制论,数值分析,统计计量等。
============Monte Carlo===========
Monte Carlo 最早是摩纳哥赌场的名字,笔者曾在七月造访。『Monte Carlo』算法一般是指,利用随机抽样的方法,获得一些随机系统的统计量或者参数。比如你有一颗硬币,你想知道掷出后获得正面的概率,那么你通过大量试验以后,可以利用获得正面的频率来估计,这也是中心极限定理的结果。金融中的一个应用是,通过 MC 来模拟多条标的资产的价格走势,代入形式为求概率期望的定价公式就可以求出估计的期权价格的模拟值。此方法则是实现定价的 MC 方法。将扔硬币和 Brownian motion 联系起来的数学定理是 Donsker invariance principle:我们可以想象用硬币反复地大量地投,减小面值 (+\epsilon, -\epsilon),同时减小投币时间间隔 (\delta),那么累积值过程在某种意义下收敛于布朗运动。
MC 具体还有很多其他金融应用,比如求某一个风险度量下的风险值。
============Machine Learning===========
『机器学习』是一门学科也可以算是方法。我在这领域涉足不深,曾经学习的是主要基于数据、利用回归分析、贝叶斯理论等方法种决策树并用它投票,用以实现模式识别、分类和预测等问题。具体方法有 adaboost,bagging prediction,random forest 等。假设你是银行数据分析师,你有客户的数据,比如年龄,性别,年收入等。如何根据这些数据来简单的构造一个信用分类法则是机器学习的一个简单应用。
⑤ 到底什么是蒙特卡罗仿真方法
蒙特卡罗仿真原理
蒙特卡罗(MonteCarlo)方法,又称随机抽样或统计模拟方法,泛指所有基于统计采样进行数值计算的方法。在第二次世界大战期间,美国参与“曼哈顿计划’’的几位科学家Stanislaw Ulam,John Von Neumann 和 N.Metropolis等首先将这种方法用于解决原子弹研制中的一个关键问题。后来N.Metropolis用驰名世界的赌城---摩纳哥的MonteCarlo一来命名这种方法,为它蒙上了一层神秘色彩。随着现代计算机技术的飞速发展,蒙特卡罗方法已经在统计物理、经济学、社会学甚至气象学等方面的科学研究中发挥了极其重要的作用,将蒙特卡罗方法用于仿真即为蒙特卡罗仿真。蒙特卡罗方法适用于两类问题,第一类是本身就具有随机性的问题,第二类是能够转化为概率模型进行求解的确定性问题。
※蒙特卡罗方法求解问题的一般步骤
用蒙特卡罗方法求解问题一般包括构造或描述概率过程、从已知概率分布抽样和建立估计量三个步骤。
构造或描述概率过程实际上就是建立随机试验模型,构造概率过程是对确定性问题而言的,描述概率过程是对随机性问题而言的,不同的问题所需要建立的随机试验模型各不相同。
所谓的从已知概率分布抽样指的是随机试验过程,随机模型中必要包含某些已知概率分布的随机变量或随机过程作为输入,进行随机试验的过程就是对这些随机变量的样本或随机过程的样本函数作为输入产生相应输出的过程,因此通常被称为对已知概率分布的抽样。如何产生已知分布的随机变量或随机过程是蒙特卡罗方法中的一个关键问题。
最后一个步骤是获得估计量,蒙特卡罗方法所得到的问题的解总是对真实解的一个估计,本身也是一个随机变量,这个随机变量是由随机试验模型输出通过统计处理得到的。
⑥ 什么是蒙特卡罗仿真
蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”,而当一种模式足够精确时,他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷:如果必须输入一个模式中的随机数并不像设想的那样是随机数,而却构成一些微妙的非随机模式,那么整个的模拟(及其预测结果)都可能是错的。
(6)蒙特卡洛模拟债券价格扩展阅读:
蒙特卡罗模拟在金融工程学,宏观经济学,生物医学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域也应用广泛。
计算机技术的发展,使得蒙特卡罗模拟在最近10年得到快速的普及。现代的蒙特卡罗模拟,已经不必亲自动手做实验,而是借助计算机的高速运转能力,使得原本费时费力的实验过程,变成了快速和轻而易举的事情。它不但用于解决许多复杂的科学方面的问题,也被项目管理人员经常使用。
⑦ 新债上市的价值点位怎么祘
可转债发行定价关乎着我们购买可转债的收益,很多人只知道买这个可以赚钱,但是具体能够获得多大收益,可转债发行定价怎么算?相信很多人不知道,下面一起了解。
可转债发行定价怎么算?
近段时间以来,可转债无疑是市场最大的热门之一,最新上市的林洋转债上市首日两度临时停牌,价格一度突破130元,更是给可转债火上浇了一把油。继之前的打新股热之后,现在打新债也蔚然成风。
那申购可转债到底可以获得多大收益呢?
拿林洋转债为例,即使顶格申购大多投资者也只能中一签,也就是1000元,最大收益也不会超过300元,虽然绝对额不大,但收益率却不低。虽然比起打新股的收益可能还不够塞牙缝的,但几乎相当于白给的钱当然是不要白不要。况且在可转债上如果投资者参与了优先配售的抢权游戏,收益可能就不一样了。
我们再来举一个例子。就拿近期即将上市的隆基转债为例吧。隆基股份的原A股股东可优先配售的可转债数量上限为其在股权登记日(2017年11月1日)收市后登记在册的持有的隆基股份股份数量按每股配售1.402元面值可转债的比例计算可配售可转债金额,再按1,000元/手的比例转换成手数,每1手为一个申购单位。也就是说如果一个投资者持有10000股隆基股份的股票,他就可以获得14020元价值的转债。隆基股份在11月1日前的收盘价为32.43元,股票成本为324300元,债券成本为14020元。如果隆基股份的价格在上市首日可以维持在40元左右,那么其转债价格将不会低于120元。也就是说,隆基转债上市首日的收益就有2804元,再加上正股隆基股份75700元的收益,总收益高达78504元,综合收益率为23.2%。
从以上的例子中我们不难看出,可转债的收益取决于可转债上市首日的价格,但上市首日什么价格比较合理呢,是开盘就卖,还是等涨涨再卖,等涨涨要涨到多少就可以卖了等一系列问题又会成为投资者的困扰,那我们要怎么预估其上市首日的价格来做到心中有数呢?下面我们就来详细说说可转债的定价。其实如果从理论上说,可转债的定价相当复杂,一般投资者别说算,能理解都很不容易,但为了体现严谨性,我们还是得大概交待一下,如果实在看不懂也没关系,您可以果断跳过,直接看最后就行了,最后结论会简单到出乎意料。
可转债是指持有人有权利在规定期限内(转股期)将持有的债券按约定价格(转股价)转换成发行公司股票的债券。由于其除了具备一般公司债的性质和最基本的转股权外,可转债内还含有赎回权、回售权和下修权,从而增加了可转债结构的复杂性,使其定价和投资策略的难度要比股票、债券、甚至普通的期权更大。
一般情况下,为方便定价,通常将可转债的价值简化成普通债券价值和美式看涨期权价值之和。同时,按照期权定价的方式不同,可转债定价的理论方法可以分为BS方程、二叉树模型和蒙特卡罗模拟等。是不是光看看名字就晕了,没关系,反正我们也不详细说,大家就知道这个相当复杂就行了,以至于复杂到一般人没法用。于是,为了更直观和更具有可操作性,大家最常用的是隐含波动率法和转股溢价法。对于隐含波动率法来说,一是对隐含波动率的估计是关键,一般情况下会采用180天年化的历史波动率作为估计值;二是估计完了隐含波动率之后,还是得运用BS公式进行计算,一般人依然不会算。所以对于资本市场来说,转股溢价率法是比较简单实用的可转债定价方法。
转股溢价率,又称平价溢价率,是衡量可转债的最重要指标,其计算公式为:
其中
⑧ 什么是蒙特卡洛模拟( Monte Carlo simulation)
蒙特卡洛模拟又称为随机抽样或统计试验方法,属于计算数学的一个分支,它是在上世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
蒙特卡洛随机模拟法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
蒙特卡洛随机模拟法 - 实施步骤抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
(8)蒙特卡洛模拟债券价格扩展阅读
基本原理思想
当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。
蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。
⑨ 蒙特卡罗模拟
蒙特卡罗模拟也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·罗方法正是以概率为基础的方法。与它对应的是确定性算法。