㈠ 金融良性发展 大数据驱动将成趋势
大数据在金融领域的应用远不止如此,银行、保险、基金、证券等领域均有广泛的市场,一般有精准营销和大数据风控两个方面。业内人士建议,通过大数据挖掘金融价值,使数据资产成为金融机构的核心竞争力。
再复杂的其本质也简单,金融大数据的运用与发展就是其一。
近来网贷平台频暴雷,根本原因除了外部监管趋严、市场利空、经营不善以外,不外乎资金错配、假标盛行、借款人恶意欠债等,这些原因用简单的办法就可以得到解决:其中大多可以通过大数据征信来解决信息不对称。而大数据征信是利用数据分析和模型进行风险评估,依据评估分数,预测还款人的还款能力、还款意愿以及欺诈风险。在金融风控领域,大数据指的是全量数据和用户行为数据。大数据在金融领域的应用远不止如此,银行、保险、基金、证券等领域均有广泛的市场。
大数据在金融领域应用:精准营销和大数据风控
据苏宁金融研究院高级研究员薛洪言介绍,大数据在金融领域的应用,一般有精准营销和大数据风控两个方面。
薛洪言表示,精准营销是基于行为数据去预测用户的偏好和兴趣,继而推荐合适的金融产品。对于大数据风控,其逻辑便在于“未来是过去的重复”,即用已经发生的行为模式和逻辑来预测未来。这意味着,随着随机事件的大量发生,是可以发现其内在规律的。而大数据里包含的海量数据,为我们发觉隐藏在随机事件后面的规律提供了条件。而大数据风控的两个应用,信用风险和欺诈风险,背后都是这个逻辑,通过分析历史事件,找到内在规律,建成模型,然后用新的数据去验证和进化这个模型。
贵阳大数据交易所执行总裁王叁寿告诉中国经济时报记者,截至2017年底,中国网民规模达到7.72亿,手机网民规模达到7.53亿。随着我国加快IPv6、5G的商用部署,数据总量将呈现爆发式增长。从某种角度而言,数据详实记录了发展中的世界,而大数据使未来复现成为可能。大数据是无限循环、无限复制的绿色资源,应用次数越多,其价值越大,将会颠覆未来很多产业的竞争模式。对于当前而言,大数据是国家基础性战略资源、创新生产要素、是21世纪的“钻石矿”;对于未来而言,大数据是“活化石”。
大数据应用水平正成金融企业竞争力的核心要素
至于金融大数据的未来,有分析称,数据驱动金融将是一种趋势,谁掌握了大数据,金融营销、金融风控就会胜出。
中国支付清算协会业务协调部丁华明认为,一个关键的因素是大数据应用水平正在成为金融企业竞争力的核心要素。金融的核心是风控,风控以数据为导向。金融机构的风控水平直接影响坏账率、营收和利润。目前,金融机构正在加大在数据治理项目中的投入,结合大数据平台建设项目,构建企业内统一的数据池,实现数据的“穿透式”管理。在大数据时代,数据治理是金融机构需要深入思考的命题,有效的数据资产管控,可以使数据资产成为金融机构的核心竞争力。
普华永道的研究报告显示,83%的中国金融机构希望投资大数据。金融行业对大数据的需求属于业务驱动型。其迫切希望应用大数据技术使营销更精准、风险识别更准确、经营决策更具针对性、产品更具吸引力,从而降低企业成本,提高企业利润。随着更多金融机构基于大数据获得丰厚的回报,将进一步打消其顾虑,加速大数据的普及。
上述报告还称,各级政府正推动金融行业数据整合、共享和开放。国务院《促进大数据发展行动纲要》提出,到2018年,中央政府层面实现金税、金关、金财、金审、金盾、金宏、金保、金土、金农、金水、金质等信息系统通过统一平台进行数据共享和交换。国家还通过推动建设各类大数据服务交易平台,为数据使用者提供更丰富的数据来源。数据越关联越有价值、越开放越有价值。大数据的发展需要所有组织和个人的共同协作,将个人私有、企业自有、政府自有的数据进行整合,把私有大数据变为公共大数据。金融数据安全问题也越来越受到重视。大数据的应用为数据安全带来新的风险。数据具有高价值、无限复制、可流动等特性,这些特性为数据安全管理带来了新的挑战。
对金融机构来说,网络恶意攻击成倍增长,组织数据被窃的事件层出不穷。这对金融机构的数据安全管理能力提出了更高的要求。大数据使得金融机构内海量的高价值数据得到集中,并使数据实现高速存取。但是,如果出现信息泄露,可能一次性泄露组织内近乎全部的数据资产。数据泄露后还可能急速扩散,甚至出现更加严重的数据篡改和智能欺诈的情况。
2018年是金融行业监管大年,“防风险”依然是行业发展主旋律。“近年来大数据风控越来越受重视,越被市场认可,我们越要做好风险防控工作,合规发展。”百融金服副总裁陈雷指出,不仅金融业务要合规经营,大数据风控行业也要合规发展。
以当下正经历暴雷潮的网贷行业为例,陈雷认为,以P2P为代表的互联网金融原来只要“有胆量”就能发展起来的时代已经过去了,现在是需要拥抱科技的时代,要通过大数据挖掘金融价值。
㈡ 阿里小贷是基于大数据的金融服务平台模式么
是的,基于大数据。
延伸(来自公开):
14年2月20日,阿里金融旗下阿里小贷首次向外界透露了其独特的大数据授信审贷模型——水文模型。
水文模型的学术定义是将自然系统符号化,通过数学模型模拟水文现象。
而阿里小贷的水文模型,可以理解为建立庞大的数据库,不仅包括贷款客户自身长期的数据变化,还有参考同类企业的数据情况,以这些数据为依据,通过数学方法以及各种参数,判断客户未来的情况。
最终在阿里小贷业务决策中,水文模型将为公司决策层提供客观的分析和建议,并对业务形成优化。
举例来说,如果某个店铺的旺季是夏天,每年夏天销售都大幅增长,那么每年夏天,这个店铺对外投放额度也就会上升。通过阿里小贷的水文模型,可以按照历史数据,判断出这一店铺在这一时期的资金需求。
同时,对比该店铺其他时间的数据,判断出该店铺各个时段的资金需求,从而向店铺给出恰当的贷款。
相反,如果不进行对比,只是以夏天销售旺季的数据作为依据,那很可能为该店铺提供过多资金。
在水文模型的帮助下,阿里小贷迅速发展,2014年2月,阿里小贷累计投放贷款超过1700亿元,服务小微企业超过70万家,不良率小于1%。其中,2013年新增贷款1000亿元。
不过阿里的水文模型可能只是用于阿里这样的互联网金融公司,对传统小额贷款公司来说,这一模型有一定壁垒。
阿里小贷主要是淘宝贷款和阿里贷款,提供的服务主要是淘宝(天猫)信用贷款、订单贷款以及阿里信用贷款,和传统小额贷款公司不同,阿里的客户主要是淘宝、阿里巴巴上的店铺,由于这些店铺通过淘宝和阿里巴巴平台经营,所以阿里小贷可以轻易获得客户的历史数据。
大数据的优势,可能只有网络、腾讯这样同一级别的互联网巨头可以媲美。目前网络小贷公司也已在2013年9月获批,服务对象优先考虑网络推广的客户;腾讯旗下财付通的财付通小贷于2013年11月获批,财付通小贷目标客户是腾讯旗下电商企业。
网络和腾讯本身互联网基因以及旗下小贷公司的目标客户,决定了他们可以和阿里小贷一样建立完善的数据库,并建立大数据模型。这是传统小额贷款公司所不具备的。
或许当互联网小贷公司建立完备的大数据模型以后,一场小额贷款的互联网VS实体公司的战役将展开。
㈢ 大数据技术在金融行业有哪些应用前景
大数据金融市场前景广阔,深度开发大数据金融工具,或将重构整个金融行业。预计未来5到10年,金融大数据产业将迎来黄金增长期,大数据也将成为助推“大众创业、万众创新”浪潮的有力抓手。
据《大数据金融行业市场前瞻与投资分析报告》数据显示,2016年我国大数据金融市场规模为15.84亿元,随着政策逐步实施与落地,以大数据为核心手段、核心驱动力的产业金融,将迈入时代发展正轨成为主流趋势,预计2018年中国金融大数据应用市场会突破100亿元,金融业开始进入了大数据时代快车道。
大数据金融作为一个综合性的概念,在未来的发展中,企业坐拥数据将不再局限于单一业务,第三方支付、信息化金融机构以及互联网金融门户都将融入到大数据金融服务平台中,大数据金融服务将在各家机构各显神通的基础上,实现多元业务的融合。
伴随互联网金融纵深发展,大数据优势越加凸显。作为互联网金融创新的驱动力,大数据金融带来的方式革新,未来走向精细化和专业化。今后大数据金融行业的努力方向,应该是以完备的大数据为基础,基于用户需求提供智能化一站式产品购买及定制化服务,以及数据挖掘、数据整合、数据产品、数据应用及解决方案等。
㈣ 如何用大数据分析金融数据
有大数据分析工具的,免费的,你找一下大数据魔镜。
㈤ 大数据怎样影响着金融业
正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。
中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势:一方面,金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。
总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。
首先,大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。
其次,大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。
第三,大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,花旗、富国、UBS等先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行360度评价,计算动态违约概率和损失率,提高贷款决策的可靠性。
㈥ “大数据+金融”:智能化发展将擦出怎样的火花
大数据在互联网金融领域的应用还处于起步阶段,目前主要体现在大数据征信和大数据风控两大领域。
大数据征信作为大数据在互联网金融领域的主要应用,是指利用数据分析和模型进行风险评估,依据评估分数,预测还款人的还款能力、还款意愿、以及欺诈风险等。
大数据征信解决了传统征信数据不全、更新不及时、接入门槛高等问题,凭借其多样化的数据源及技术支撑,更能全面反映个人信用情况,从而推动更多的人能享受到优质金融服务。
大数据风控系统优势是大数据驱动,兼容手动、自动审批、决策、dai后管理。
大体有四部分功能:1、评分建模,风控部分;
2、IT系统:业务系统、审批系统、征信系统、催收系统、账务系统;
3、决策配置工具,即信dai决策引擎;
4、征信大数据的整合模块。
㈦ 大数据在金融业的应用可以发挥哪些作用
有了大数据,自然就要有大数据技术,即从各种各样类型的巨量数据中,快速获取有价值信息的技术,强调快,这是大数据技术与传统数据挖掘技术的重要区别。
从巨量数据中提取的有价值信息,即是大数据在各个领域的具体运用,比如基于大数据进行客群的细分,进而提供定制化服务;基于大数据模拟现实环境,进而进行精准评估和预测;基于大数据进行产品和模式创新,降低业务成本、提升经营效率等等。
㈧ 当传统金融模式遇到了大数据后会有哪些转变
大数据对金融最重要的影响,在于其能使一部分长尾需求得到满足。
金融行业是很有互联网机会的行业,更是很有大数据潜力的行业。
大数据时代,互联网创新、平等、普惠的精神,将慢慢融入金融。这种二八定律会慢慢改变。
二八定律:在当前利率非完全市场化与小微企业抵押担保品欠缺的情况下,采用传统信贷技术从事小微金融,需付出的边际成本与服务大企业相差不大,在信贷供给资源仍显稀缺的情形之下,银行具有提高授信门槛以迫使高风险客户退出信贷市场的动机,银行服务 80% 低端客户所带来的利润微乎其微,还不如将这部分客户赶出市场,全力支持 20% 的高端客户。
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。