❶ 金融数据分析员是干什么的
金融数据分析师的职责任是:
1、对数据源进行分析,并按一定规则采集数据入库;
2、根据上级安排,完成数据回补/清洗工作。
3、主动寻找更好的数据源。
4、主动寻找更有效率的数据维护方式。
5、对工具平台提出改善意见。
6、对负责的数据进行深入的研究。
❷ 大四毕业想应聘银行或金融单位的数据分析岗需要学习什么
数据分析师职位具有鲜明的时代特点和巨大的需求,在大学本科阶段统计专业积极探索培养大学生的数据分析能力,进而为社会提供合格的数据分析师人才的有效对策,具有重要的研究价值和实践意义。
一、数据分析师培养的意义
(一)数据分析师的培养符合国家战略
为适应世界经济一体化的进程,彻底改变我国“项目数据分析”专业技术人才紧缺的现状,2005 年 4 月,全国第一家数据分析事务所在陕西成立,到目前,我国相继已有北京、陕西、江苏、新疆、甘肃、山东、浙江、上海、黑龙江等 14 个省、市、自治区约 80 家项目数据分析专业机构进入中国市场经济舞台,涉及项目已从最初的分析评估业和金融业,扩展至会计师、投融资机构、政府审批和企业管理等众多领域。随着大数据时代的来临,构建大数据研究平台、整合创新资源、实施“专项计划”等成为各个省市的工作重点之一。
(二)数据分析师的就业前景光明
在被视为“数据元年”的今天,数据分析师以待遇优厚和地位尊崇而闻名国际,曾被Times时代杂志誉为“21世纪最热门五大新兴行业”。今天,国内数据分析行业专业人才每年以千位数非速增长着,同期各行业领域空缺岗位已达近二十万,未来中国对数据分析师的需求更是呈井喷之势。
在数据分析人才培养上,国外已经将数据分析师人才作为国家战略。据统计,目前世界 500 强企业中,有90% 以上建立了数据分析部门。大数据时代对数据分析师的巨大需求也大大刺激了高等院校的培养热情。
二、数据分析师职业素养的培养
通过对各大招聘网站数据分析师、市场调查分析师等职位招聘信息的搜集整理和深入分析,挖掘并归纳出社会用人单位对数据分析师职位的知识技能和道德素质等方面的具体要求如下:
(一)数据分析师的职业内涵
数据分析师是指在不同行业中,专门从事数据搜集、整理、分析,并依据数据做出行业或市场研究、评估和预测的专业人员;是以实际数据为依据,对项目现状及远期进行统计、分析、预测并转化为决策信息的专业人才。数据分析师可以通过掌握的大量行业数据,运用科学的计算工具,将经济学原理与数学模型结合,进行科学合理的定量分析,数据分析师可以预测企业未来的收益及风险,为企业经营决策提供科学量化分析的依据。
目前数据分析师的认证主要有 2个:一是注册数据分析师(CDA),由CDA注册数据分析师协会Certified Data Analyst Institute)在顺应大数据、云计算的潮流下发起成立的职业简称;二是项目数据分析师(CPDA),由中国商业联合会数据分析专业委员会以及工信部教育考试中心共同考核认证,证书是申请成立项目数据分析事务所的必备条件之一。
(二)数据分析师的知识要求
掌握多元统计分析、应用回归分析、时间序列分析、计量经济学、经济预测研究等统计建模方法,了解本行业统计方法的新进展;掌握 SQL/oracle 等数据库的数据整理、查询、提取等方法;熟练使用相关的统计软件,准确解读软件的运行结果;了解相关行业的业务知识和数据构成。
(三)数据分析师的能力要求
对信息、数据敏感,具备较强的文字功底,能独立撰写研究报告;能熟练使用 SPSS/SAS/Eviews 等统计分析软件,具备数据分析或数据挖掘的综合能力;掌握数据库体系结构及数据架构,具备 Excel/SQL 或 Access 的查询语句运用技能与知识,有良好的数据处理、建立统计模型能力。
(四)数据分析师的岗位职责
承担行业、企业有关信息、数据的调查、搜集、整理、分析研究和发布工作;参与专项研究、课题和调研咨询项目,撰写行业分析文章和研究报告;对大数据进行深入挖掘,建立相关模型进行预测、分析,找出相关的联系,揭示内在规律,为行业、企业决策提供依据。
以上是小编为你整理到的一些资料,希望对你有所帮助~~
❸ 金融数据分析工作内容主要是什么需要具备哪些技能后期是否有发展空间
1维护公司运营指标体系,根据业务线建立数据分析模型2研究用户生命周期用户画像几个人行为习惯,建立数学模型,理清关系的结论,写分析报告3不断完善和优化模型和数据分析结果。需要具备本科以上数学,统计计算机经济相关专业,熟悉统计分析数据挖掘,熟悉SPSS. sad. stata等统计分析平能熟悉操作一种软件3是具备独立编写数据分析报告能力,并能给出建议4具有数据挖掘相关项目实施经验者优先考虑,后期有发展空间
❹ 准备去金融公司上班,公司说是做外汇,数据分析的,我想知道是去做电话销售吗可以去做的嘛
现在金融正火,却也举步维艰,有很多挂着正牌晃子干非法事,都说金融创新与金融诈骗仅一墙之隔,长个心眼儿,别进行非法金融,自己钱也收紧了,金融和实体不一样,一念之差很可做万劫不复
❺ 金融公司的销售数据分析,属于非销售类岗位主要工作内容是做什么
首先,金融行业的子行业包括很多,比如:银行、证券、保险、基金、信托、私募等等。但这些子行业都会有很多相似的部门结构划分,大致可以分为以下几类:
销售部门。所有的金融机构都有,通常分为个人、机构、渠道销售,主要是根据销售对象来区分,销售在金融行业当中,相对专业要求略低,注意,只是略低。但是需要与人打交道的能力很强。
产品部门。主要业务是设计产品给销售部门卖掉。总体来说,技术含量很高,需要熟悉产品相关的金融知识,要了解销售的需求、客户的需求,把这些需求转化为其他部门需要的语言。
投资/交易部门。这个部门才是一般人通常所理解的“干金融的”,主要业务是把自己机构的钱或者客户的钱,投资出去,获得回报。研究、分析、思考、讨论、决策。需要很强的专业知识、数学功底,研究分析能力,决策能力等等。
风控部门。主要业务是对公司的产品和其他部门的行为进行风险评估,需要了解行业、了解法规、了解产品。
当然还有很多其他业务部门,以上就是总结的共性。
❻ 银行或金融单位的数据分析岗需要具备什么能力
最重要还是数据治理和数据分析的能力!
近年来,随着大数据产业的蓬勃发展,企业和政府对于自身数据资产的价值也产生了重新的认识。但遗憾的是数据本身并不能直接产生价值。当我们想利用数据产生价值的时候,很多问题都会暴露出来,比如:数据标准缺失,数据源头不清晰,数据质量缺乏监管等。这就要求我们要有统一的数据标准和良好的数据质量来构成数据价值实现的基础。而数据治理恰是保障这一基础的存在。
国际数据管理协会(DAMA)对数据治理给出的定义是:数据治理是对数据资产管理行使权力和控制的活动集合。它是一个管理体系,包括组织、制度、流程、工具。
在国内企业的实际应用中,一般将数据治理和数据管理综合考虑,认为数据治理是将数据作为组织资产而展开的一系列的集体化工作,包括从组织架构、管理制度、操作规范、信息技术应用、绩效考核支持等多个维度对组织的数据模型、数据架构、数据质量、数据安全、数据生命周期等方面进行全面的梳理、建设以及持续改进的过程。
五、 数据和AI中台
随着金融业正在迈入第四个重大发展阶段--数字化时代,给各金融机构带来了发展机遇,同时也伴随着严峻的挑战。如何解决数据孤岛、新应用与老系统结合难?现有IT能力不足以支撑业务的快速变化?数据调用方式多样且标准不统一质量差?以及数据资源未被挖掘数字化能力得不到释放等问题,是企业面临的共同难题。数据集成和数据资产管理是解决这些问题的有效途径之一。
本课程将从如何进行有效的数据集成、各种数据平台建设介绍、如何有效开展数据治理,以及数据资产管理与数据中台的建设这四个大的方面进行开展。帮助企业在数字化进程中快速建立系统间的数据集成体系,支撑用户数据集成应用的快速实现;提供完善数据管理体系和有效的完成数据整合方案,支撑起上层数据的挖掘、分析应用;对企业的发展战略和业务创新提供有效的数据支撑,洞察企业的运营状态和市场趋势等,提高企业新业务灵活性,创建数据应用敏捷环境。
❼ 从事金融数据分析助理岗位,如果之后回三线城市,有哪些岗位或工作可以做
三线城市的证券、保险公司从事产品设计和测算分析,也可以到大型国有企业和集团化民营企业的财务公司从事资金管理工作,对资金管控进行研究和管理。有的三线城市统计局和城调队也需要这方面的人才。