① 腦機介面的大事記
Phillip Kennedy及其同事用錐形營養性(neurotrophic-cone)電極植入術在猴上建造了第一個皮層內腦機介面。
1999年,哈佛大學的Garrett Stanley試圖解碼貓的丘腦外側膝狀體內的神經元放電信息來重建視覺圖像。他們記錄了177個神經元的脈沖列,使用濾波的方法重建了向貓播放的八段視頻,從重建的結果中可以看到可辨認的物體和場景。
杜克大學的Miguel Nicolelis是支持用覆蓋廣大皮層區域的電極來提取神經信號、驅動腦機介面的代表。他認為,這種方法的優點是能夠降低單個電極或少量電極採集到的神經信號的不穩定性和隨機性。Nicolelis在1990年代完成在大鼠的初步研究後,在夜猴內實現了能夠提取皮層運動神經元的信號來控制機器人手臂的實驗。到2000年為止,Nicolelis的研究組成功實現了一個能夠在夜猴操縱一個游戲桿來獲取食物時重現其手臂運動的腦機介面。這個腦機介面可以實時工作。它也可以通過網際網路遠程操控機械手臂。不過由於猴子本身不接受來自機械手臂的感覺反饋,這類腦機介面是開環的。Nicolelis小組後來的工作使用了恆河猴。
其它設計腦機介面演算法和系統來解碼神經元信號的實驗室包括布朗大學的John Donoghue、匹茲堡大學的Andrew Schwartz、加州理工的Richard Anderson。這些研究者的腦機接在某一時刻使用的神經元數為15-30,比Nicolelis的50-200個顯著要少。Donoghue小組的主要工作是實現恆河猴對計算機屏幕上的游標的運動控制來追蹤視覺目標。其中猴子不需要運動肢體。 Schwartz小組的主要工作是虛擬現實的三維空間中的視覺目標追蹤,以及腦際介面對機械臂的控制。這個小組宣稱,他們的猴子可以通過腦機介面控制的機械臂來喂自己吃西葫蘆。Anderson的小組正在研究從後頂葉的神經元提取前運動信號的腦機介面。此類信號包括實驗動物在期待獎勵時所產生信號。
除了以上所提及的這些用於計算肢體的運動參數的腦機介面以外,還有用於計算肌肉的電信號(肌電圖)的腦機介面。此類腦機介面的一個應用前景是通過刺激癱瘓病人的肌肉來重建其自主運動的功能。
② 腦電信號分析方法與腦機介面技術這本書怎麼樣
侵入式腦機介面主要用於重建特殊感覺(例如視覺)以及癱瘓病人的運動功能。此類腦機介面通常直接植入到大腦的灰質,因而所獲取的神經信號的質量比較高。但其缺點是容易引發免疫反應和愈傷組織(疤),進而導致信號質量的衰退甚至消失。
視覺腦機介面方面的一位先驅是William Dobelle。他的皮層視覺腦機介面主要用於後天失明的病人。1978年,Dobelle在一位男性盲人Jerry的視覺皮層植入了68個電極的陣列,並成功製造了光幻視(Phosphene)。該腦機介面系統包括一個採集視頻的攝像機,信號處理裝置和受驅動的皮層刺激電極。植入後,病人可以在有限的視野內看到灰度調制的低解析度、低刷新率點陣圖像。該視覺假體系統是攜帶型的,且病人可以在不受醫師和技師幫助的條件下獨立使用。
2002年,Jens Naumann成為了接受Dobelle的第二代皮層視覺假體植入的16位病人中的第一位。第二代皮層視覺假體的特點是能將光幻視更好地映射到視野,創建更穩定均一的視覺。其光幻視點陣覆蓋的視野更大。接受植入後不久,Jens就可以自己在研究中心附近慢速駕車漫遊。
針對「運動神經假體」的腦際介面方面,Emory大學的Philip Kennedy和Roy Bakay最先在人植入了可獲取足夠高質量的神經信號來模擬運動的侵入性腦際介面。他們的病人Johnny Ray患有腦干中風導致的鎖閉綜合症。Ray在1998年接受了植入,並且存活了足夠長的時間來學會用該腦機介面來控制電腦游標。
2005年,Cyberkinetics公司獲得美國FDA批准,在九位病人進行了第一期的運動皮層腦機介面臨床試驗。四肢癱瘓的Matt Nagle成為了第一位用侵入式腦機介面來控制機械臂的病人,他能夠通過運動意圖來完成機械臂控制、電腦游標控制等任務。其植入物位於前中回的運動皮層對應手臂和手部的區域。該植入稱為BrainGate,是包含96個電極的陣列。
部分侵入式腦機介面一般植入到顱腔內,但是位於灰質外。其空間解析度不如侵入式腦機介面,但是優於非侵入式。其另一優點是引發免疫反應和愈傷組織的幾率較小。
皮質腦電圖(ECoG:ElectroCorticoGraphy)的技術基礎和腦電圖的相似,但是其電極直接植入到大腦皮層上,硬腦膜下的區域。華盛頓大學(聖路易斯)的Eric Leuthardt和Daniel Moran是最早在人體試驗皮層腦電圖的研究者。根據一則報道,他們的基於皮層腦電圖的腦際介面能夠讓一位少年男性病人玩電子游戲。同時該研究也發現,用基於皮層腦電圖的腦機介面來實現多於一維的運動控制是比較困難的。
基於「光反應成像」的腦機介面尚處在理論階段。其概念是在顱腔內植入可測量單神經元興奮狀態的微型感測器,以及受其驅動的微型激光源。可用該激光源的波長或時間模式的變化來編碼神經元的狀態,並將信號發送到顱腔外。該概念的優點是可在感染、免疫反應和愈傷反應的幾率較小的條件下長時間監視單個神經元的興奮狀態。 作為有潛力的非侵入式腦機介面已得到深入研究,這主要是因為該技術良好的時間解析度、易用性、便攜性和相對低廉的價格。但該技術的一個問題是它對雜訊的敏感,另一個使用EEG作為腦機介面的現實障礙是使用者在工作之前要進行大量的訓練。這方面研究的一個典型例子是德國圖賓根大學的Niels Birbaurmer於1990年代進行的項目。該項目利用癱瘓病人的腦電圖信號使其能夠控制電腦游標。經過訓練,十位癱瘓病人能夠成功地用腦電圖控制游標。但是游標控制的效率較低,在屏幕上寫100個字元需要1個小時,且訓練過程常耗時幾個月。在Birbaumer的後續研究中,多個腦電圖成分可被同時測量,包括μ波和β波。病人可以自主選擇對其最易用的成分進行對外部的控制。
與上述這種需要訓練的EEG腦機介面不同,一種基於腦電P300信號的腦機介面不需要訓練,因為P300信號是人看到熟識的物體是非自主地產生的。美國羅切斯特大學的Jessica Bayliss的2000年的一項研究顯示,受試者可以通過P300信號來控制虛擬現實場景中的一些物體,例如開關燈或者操縱虛擬轎車等。
1999年,美國凱斯西留地大學由Hunter Peckham領導的研究組用64導腦電圖恢復了四肢癱瘓病人Jim Jatich的一定的手部運動功能。該技術分析腦電信號中的β波,來分類病人所想的向上和向下兩個概念,進而控制一個外部開關。除此以外,該技術還可以使病人控制電腦游標以及驅動其手部的神經控制器,來一定程度上回復運動功能。
應用人工神經網路,計算機可以分擔病人的學習負擔。Fraunhofer學會2004年用這一技術顯著降低了腦機介面訓練學習所需的時間。
Eardo Miranda的一系列試驗旨在提取和音樂相關的腦電信號,使得殘疾病人可以通過思考音樂來和外部交流,這種概念稱為「腦聲機」(encephalophone)。 John Donoghue及其同事創立了Cybernetics公司,宗旨是推動實用的人類腦機介面技術的發展。該公司目以Cybernetics神經技術公司為名在美國股市上市。BrainGate是該公司生產的電極陣列,該產品基於美國猶他大學的Richard Normann研發的「猶他」電極陣列。
Philip Kennedy創立了Neural Signals公司。該公司生產的腦機介面設備使用玻璃錐內含的蛋白質包裹的微電極陣列,旨在促進電極和神經元之間的耦合。該公司除了生產侵入式腦際介面產品,還銷售一種可回復言語功能的植入設備。
2004年為止,William Dobelle創建的公司已經在16位失明病人內植入了初級視皮層視覺假體。該公司仍在繼續研發視覺植入物,但這類產品至今沒有獲得FDA的批准,因而不能在美國境內使用於人類。
③ 如何看待馬斯克創辦的腦機介面公司Neuralink
我們都知道,馬斯克創辦了多家公司,從最早的Zip2,到現在的Neuralink,The Boring Company,當然最過知名的恐怕還是SpaceX,而馬斯克雖然是特斯拉的CEO,但特斯拉並非馬斯克創立的。
出於對AI的恐懼,馬斯克做了兩件事:
Neuralink所做的事情,從目前來看,很多人仍然看不懂,不過,馬斯克請來了擅長撰寫科技長文的Tim Urban,專門寫了一篇介紹Neuralink的文章,文章非常詳細的闡述了Neuralink到底要做什麼,下圖就是摘自Tim Urban的這篇文章,通過下圖,希望可以幫助網友更直觀的了解Tim Urban(中文翻譯:聞西):
④ 目前國內植入式腦機介面有哪些,其中無線採集腦電波的感測器頻率是多少
1、節氣門位置感測器
作用:節氣門位置感測器是監測節氣門開啟角度的大小,確定怠速,全負荷及加減速工況,以實施與節氣門開度狀態
相對應的各種噴油量控制。失效影響:怠速忽高忽低,或造成飛車現象。
2、進氣門壓力感測器
作用:進氣壓力感測器是提供發動機負荷信息,即通
遇對進氣管的壓力測量,間接測量進入發動機的進氣量,再通過內部電路使進氣量轉化成電信號提供給電腦。失效影響:造成發動機不易起動,或怠速不穩。
3、進氣溫度感測器
作用:提供空氣溫度信息用於修正噴油量和點火正時。 失效影響:怠速偏低,易熄火。
4、曲軸轉角感測器
作用:是提供轉速和曲軸相位信息,為噴油正時和點火正時提供參照點。失效影響:發動機不能起動或起動後發動機突然熄火。
5、冷卻液溫度感測器
作用:是監測發動機冷卻液溫度,將之轉換為電壓信號傳送到電腦,ECU根據此信號來控制噴油量,點火正時和怠速控制。 失效影響:怠速偏低。
6、氧感測器
作用:是提供混合器濃度信息,用於修正噴油量,實現對空燃比的閉環控制,保證發動機實際的空燃比接近理論空燃比的主要元件。 失效影響:怠速不穩,耗量過大。
7、爆震感測器
作用:是提供爆震信息,用於修正點火正時,實引爆震閉環控制。 失效影響:當爆震將要發生前無法提供爆震信點,電腦接收不到信號「峰值」不能減少點火提前角,而發生爆震。
8、三元催化器
作用:三元催化器裝在排氣管中的消聲器前,可同時降低尾氣中三種污染物(一氧化碳CO、未燃碳氧化合物HC和氧化物Nox的含量,發動機的空燃比接近理論空燃比時,三元催化器轉化效率最高,當有害氣體的300℃~800℃的高溫通過三元催化器中心經附在陶瓷單體上的貴重催化發生氧化和還原反應,轉化為無害氣體。 失效影響:排出的廢氣不能達標。
⑤ 「狂人」馬斯克其旗下腦機介面公司Neuralink,明年要開始人體實驗,這意味著什麼
馬斯克一直堅持,人工智慧(AI)可能是人類文明面臨的最大威脅。已故科學家霍金以及許多專家、學者都持類似觀點。應對這種危機,馬斯克想到的方案是讓人類變成AI,來制約AI。Neuralink公司研發的腦機介面系統其實就是這個方案的一部分。不可否認,這項新技術不僅可能給醫學界帶來福音,還可能使未來人類的生活方式變得更加高效。不過,事情並沒有那麼簡單。
我們有理由相信,隨著科技進步,未來腦機介面手術可以做到安全無風險。但是馬斯克計劃2020年就進行人體試驗,這個時間安排未免過於冒險,至少需要拿出更多令人信服的證據。
⑥ 腦機介面的介面研究
侵入式腦機介面主要用於重建特殊感覺(例如視覺)以及癱瘓病人的運動功能。此類腦機介面通常直接植入到大腦的灰質,因而所獲取的神經信號的質量比較高。但其缺點是容易引發免疫反應和愈傷組織(疤),進而導致信號質量的衰退甚至消失。
視覺腦機介面方面的一位先驅是William Dobelle。他的皮層視覺腦機介面主要用於後天失明的病人。1978年,Dobelle在一位男性盲人Jerry的視覺皮層植入了68個電極的陣列,並成功製造了光幻視(Phosphene)。該腦機介面系統包括一個採集視頻的攝像機,信號處理裝置和受驅動的皮層刺激電極。植入後,病人可以在有限的視野內看到灰度調制的低解析度、低刷新率點陣圖像。該視覺假體系統是攜帶型的,且病人可以在不受醫師和技師幫助的條件下獨立使用。
2002年,Jens Naumann成為了接受Dobelle的第二代皮層視覺假體植入的16位病人中的第一位。第二代皮層視覺假體的特點是能將光幻視更好地映射到視野,創建更穩定均一的視覺。其光幻視點陣覆蓋的視野更大。接受植入後不久,Jens就可以自己在研究中心附近慢速駕車漫遊。
針對「運動神經假體」的腦際介面方面,Emory大學的Philip Kennedy和Roy Bakay最先在人植入了可獲取足夠高質量的神經信號來模擬運動的侵入性腦際介面。他們的病人Johnny Ray患有腦干中風導致的鎖閉綜合症。Ray在1998年接受了植入,並且存活了足夠長的時間來學會用該腦機介面來控制電腦游標。
2005年,Cyberkinetics公司獲得美國FDA批准,在九位病人進行了第一期的運動皮層腦機介面臨床試驗。四肢癱瘓的Matt Nagle成為了第一位用侵入式腦機介面來控制機械臂的病人,他能夠通過運動意圖來完成機械臂控制、電腦游標控制等任務。其植入物位於前中回的運動皮層對應手臂和手部的區域。該植入稱為BrainGate,是包含96個電極的陣列。
部分侵入式腦機介面一般植入到顱腔內,但是位於灰質外。其空間解析度不如侵入式腦機介面,但是優於非侵入式。其另一優點是引發免疫反應和愈傷組織的幾率較小。
皮質腦電圖(ECoG:ElectroCorticoGraphy)的技術基礎和腦電圖的相似,但是其電極直接植入到大腦皮層上,硬腦膜下的區域。華盛頓大學(聖路易斯)的Eric Leuthardt和Daniel Moran是最早在人體試驗皮層腦電圖的研究者。根據一則報道,他們的基於皮層腦電圖的腦際介面能夠讓一位少年男性病人玩電子游戲。同時該研究也發現,用基於皮層腦電圖的腦機介面來實現多於一維的運動控制是比較困難的。
基於「光反應成像」的腦機介面尚處在理論階段。其概念是在顱腔內植入可測量單神經元興奮狀態的微型感測器,以及受其驅動的微型激光源。可用該激光源的波長或時間模式的變化來編碼神經元的狀態,並將信號發送到顱腔外。該概念的優點是可在感染、免疫反應和愈傷反應的幾率較小的條件下長時間監視單個神經元的興奮狀態。 作為有潛力的非侵入式腦機介面已得到深入研究,這主要是因為該技術良好的時間解析度、易用性、便攜性和相對低廉的價格。但該技術的一個問題是它對雜訊的敏感,另一個使用EEG作為腦機介面的現實障礙是使用者在工作之前要進行大量的訓練。這方面研究的一個典型例子是德國圖賓根大學的Niels Birbaurmer於1990年代進行的項目。該項目利用癱瘓病人的腦電圖信號使其能夠控制電腦游標。經過訓練,十位癱瘓病人能夠成功地用腦電圖控制游標。但是游標控制的效率較低,在屏幕上寫100個字元需要1個小時,且訓練過程常耗時幾個月。在Birbaumer的後續研究中,多個腦電圖成分可被同時測量,包括μ波和β波。病人可以自主選擇對其最易用的成分進行對外部的控制。
與上述這種需要訓練的EEG腦機介面不同,一種基於腦電P300信號的腦機介面不需要訓練,因為P300信號是人看到熟識的物體是非自主地產生的。美國羅切斯特大學的Jessica Bayliss的2000年的一項研究顯示,受試者可以通過P300信號來控制虛擬現實場景中的一些物體,例如開關燈或者操縱虛擬轎車等。
1999年,美國凱斯西留地大學由Hunter Peckham領導的研究組用64導腦電圖恢復了四肢癱瘓病人Jim Jatich的一定的手部運動功能。該技術分析腦電信號中的β波,來分類病人所想的向上和向下兩個概念,進而控制一個外部開關。除此以外,該技術還可以使病人控制電腦游標以及驅動其手部的神經控制器,來一定程度上回復運動功能。
應用人工神經網路,計算機可以分擔病人的學習負擔。Fraunhofer學會2004年用這一技術顯著降低了腦機介面訓練學習所需的時間。
Eardo Miranda的一系列試驗旨在提取和音樂相關的腦電信號,使得殘疾病人可以通過思考音樂來和外部交流,這種概念稱為「腦聲機」(encephalophone)。 John Donoghue及其同事創立了Cybernetics公司,宗旨是推動實用的人類腦機介面技術的發展。該公司目以Cybernetics神經技術公司為名在美國股市上市。BrainGate是該公司生產的電極陣列,該產品基於美國猶他大學的Richard Normann研發的「猶他」電極陣列。
Philip Kennedy創立了Neural Signals公司。該公司生產的腦機介面設備使用玻璃錐內含的蛋白質包裹的微電極陣列,旨在促進電極和神經元之間的耦合。該公司除了生產侵入式腦際介面產品,還銷售一種可回復言語功能的植入設備。
2004年為止,William Dobelle創建的公司已經在16位失明病人內植入了初級視皮層視覺假體。該公司仍在繼續研發視覺植入物,但這類產品至今沒有獲得FDA的批准,因而不能在美國境內使用於人類。