當前位置:首頁 » 持倉收益 » 黑洞概念的上市公司
擴展閱讀
股票投資經濟學 2021-06-17 16:24:20

黑洞概念的上市公司

發布時間: 2021-03-29 18:34:59

❶ 霍金的黑洞理論,是怎麼個概念

霍金指出,由於找不到黑洞的邊界,因此黑洞是「不存在」的,黑洞的邊界又稱「視界」。經典黑洞理論認為,黑洞外的物質和輻射可以通過視界進入黑洞內部,而黑洞內的任何物質和輻射均不能穿出視界。

黑洞是宇宙中最奇特和神秘的天體,它是超強引力源,時空的扭曲者,其超強引力使得連宇宙中跑的最快的光都會被它拉住,而逃不出它的「魔掌」。它是在時間和空間中形成的「洞」,在不斷地吸積著周圍的物質,質量增加,還是空中的「強盜」,光子的「牢籠」。

(1)黑洞概念的上市公司擴展閱讀:

霍金的計算還有一個重要發現:黑洞的質量越小,溫度越高,輻射也越強。顯然,蒸發只有對微型黑洞來說才有特別的影響,而微型黑洞的溫度是很高的。在黑洞中,質量越大的黑洞,溫度越低,蒸發的越慢;質量越小的黑洞,溫度越高,蒸發的也越快。

對於微黑洞來說,溫度非常之高,可達千萬開甚至上億開,隨著蒸發的加劇,質量丟失的很快,溫度會迅猛地上升,隨著溫度上升的加快,質量丟失的就更厲害,這中過程會以瘋狂的形式演變,最終黑洞被摧毀,以猛烈的爆發而告終,所有粒子都得到了大赦(對巨型黑洞來說發射粒子的過程十分緩慢,相當於蒸發;而對微黑洞來說,發射粒子的過程十分迅猛,相當於爆發)。

對於星系中心的巨型黑洞來說,其蒸發的過程將遠遠超出宇宙的年齡,假定宇宙有足夠長的壽命,並且不回縮,那麼這類黑洞最終也還是要蒸發掉。不過這類黑洞目前還是吸積遠大於蒸發,以吸積為主。

❷ 黑洞具體的概念是什麼

黑洞是廣義相對論預言的一種特殊的天體。其基本特徵是有一個封閉的視界。任何東西,包括光在內,只要進入視界以內都會被吞噬掉。
黑洞的概念最早出現是1798年,當時拉普拉斯根據牛頓力學計算出,一個直徑為太陽250倍而密度與地球一樣的天體,其引力足以捕獲其發出的光線而成為一個暗天體。1939年,奧本海默根據廣義相對論證明一個無壓球體在自身引力作用下能坍縮到引徑rg。rg=2GM/(c*c)當天體的質量M大於臨界質量Mc時,引力坍塌後就不可能達到任何的穩態,只能形成黑洞。黑洞只有三個特徵量分別是質量M、角動量J和電荷Q。Q=0的黑洞為軸對稱的克爾黑洞,J=Q=0時的黑洞為球對稱的史瓦西黑洞。

❸ 研究宇宙黑洞的上市公司有哪些

額,黑洞一直是一些專門的科學家在研究,目前透露的最多的恐怕只有霍金,時間簡史,霍金理論,這些都是黑洞的主要知識點,但有的科學家的發現是還在證實不敢隨便公布與眾,這都會引起一些不小的恐慌。
所以在得到一個正確的答案之前,暫時先看看霍金的著作,時間簡史,和霍金射線之類的知識點吧。先了解一下入門。

❹ 黑洞的概念是誰提出的

最初指出黑洞存在,開假設為一個質量很大的神秘天體,是在1798年,當時法國的拉普拉斯利用牛頓萬有引力和光的微粒說提出這一見解。他說:「一個密度如地球而直徑為250個太陽的發光恆星,由於其引力的作用,將不允許任何光線離開它。由於這個原因,宇宙間最大的發光天體,對於我們卻是不可見的。」他稱這種天體為「黑暗的一團」,並猜測宇宙太空中可能有很多這樣的暗天體。這樣的暗天體就類似於我們今天所說的黑洞。

1916年,愛因斯坦發表廣義相對論,不久,德國物理學家史瓦西得到了廣義相對論方程的一個精確解。他預言存在5種不旋轉、不帶電的黑洞。當時就已算出,若要成為黑洞,一個質量如太陽的星體,其半徑必須縮到2.96千米,而地球則需壓縮到半程為0.89厘米。

然而,史瓦西提出的黑洞概念在當時並沒有受到人們的普遍重視。直到20世紀70年代,世界著名的物理學家霍金才把量子力學與廣義相對論結合起來,進行黑洞表面量子效應的研究,最終才使得黑洞理論的研究向前推進了一大步。

❺ 黑洞理論的創始人是誰

黑洞理論沒有明確是誰創立的。但有一點可以肯定。就是所有關於黑洞的理論都是廣義相對論的推論。都是建立在廣義相對論基礎之上的。所以雖然愛因斯坦從沒提過「黑洞」這個概念。但我想把黑洞理論的創立歸功於他沒人會反對。愛因斯坦1915年創立廣義相對論後僅1年,1916年,德國天文學家卡爾·史瓦西通過計算得到了愛因斯坦引力場方程的一個解。這個解表明,如果將大量物質集中於空間一點,其周圍會產生奇異的現象。即在質點周圍存在一個界面——「視界」,一旦進入這個界面,即使光也無法逃脫。這種「不可思議的天體」被美國物理學家約翰·阿奇巴德·惠勒命名為「黑洞」(他在1969年在紐約的一次會議上闡述愛因斯坦的理論,為了說服場下聽眾,他靈機一動,冒出了"黑洞"這個詞,以描述這些恆星可怕而充滿戲劇性的命運。"黑洞"一詞從此流傳開來)。這就是黑洞理論的最初建立過程。其後近百年中,許多科學家不斷完善和修正了黑洞理論。這其中包括霍金在1975年提出的「霍金輻射」假設。他認為黑洞並沒有那麼「黑」。而是也有一點輻射的。但他這假設至今沒有被觀測或實驗證實。

❻ 黑洞的發展史簡介

1970年,美國的「自由」號人造衛星發現了與其他射線源不同的天鵝座X-1,位於天鵝座X-1上的是一個比太陽重30多倍的巨大藍色星球,該星球被一個重約10個太陽的看不見的物體牽引著。天文學家一致認為這個物體就是黑洞,它就是人類發現的第一個黑洞。1928年,薩拉瑪尼安·錢德拉塞卡到英國劍橋跟英國天文學家阿瑟·愛丁頓爵士(一位廣義相對論家)學習。錢德拉塞卡意識到,不相容原理所能提供的排斥力有一個極限。恆星中的粒子的最大速度差被相對論限制為光速。這意味著,恆星變得足夠緊致之時,由不相容原理引起的排斥力就會比引力的作用小。錢德拉塞卡計算出;一個大約為太陽質量一倍半的冷的恆星不能支持自身以抵抗自己的引力。(這質量稱為錢德拉塞卡極限)前蘇聯科學家列夫·達維多維奇·蘭道幾乎在同時也發現了類似的結論。如果一顆恆星的質量比錢德拉塞卡極限小,它最後會停止收縮並終於變成一顆半徑為幾千英里和密度為每立方英寸幾百噸的「白矮星」。白矮星是它物質中電子之間的不相容原理排斥力所支持的。第一顆被觀察到的是繞著夜空中最亮的恆星——天狼星轉動的那一顆。蘭道指出,對於恆星還存在另一可能的終態。其極限質量大約也為太陽質量的一倍或二倍,但是其體積甚至比白矮星還小得多。這些恆星是由中子和質子之間,而不是電子之間的不相容原理排斥力所支持。所以它們被叫做中子星。它們的半徑只有10英里左右,密度為每立方英寸幾億噸。在中子星被第一次預言時,並沒有任何方法去觀察它,很久以後它們才被觀察到。另一方面,質量比錢德拉塞卡極限還大的恆星在耗盡其燃料時,會出現一個很大的問題:在某種情形下,它們會爆炸或拋出足夠的物質,使自己的質量減少到極限之下,以避免災難性的引力坍縮,不管恆星有多大,這總會發生。愛丁頓拒絕相信錢德拉塞卡的結果。愛丁頓認為,一顆恆星不可能坍縮成一點。這是大多數科學家的觀點:愛因斯坦自己寫了一篇論文,宣布恆星的體積不會收縮為零。其他科學家,尤其是他以前的老師、恆星結構的主要權威——愛丁頓的敵意使錢德拉塞卡拋棄了這方面的工作,轉去研究諸如恆星團運動等其他天文學問題。然而,他獲得1983年諾貝爾獎,至少部分原因在於他早年所做的關於冷恆星的質量極限的工作。錢德拉塞卡指出,不相容原理不能夠阻止質量大於錢德拉塞卡極限的恆星發生坍縮。但是,根據廣義相對論,這樣的恆星會發生什麼情況呢。這個問題被一位年輕的美國人羅伯特·奧本海默於1939年首次解決。然而,他所獲得的結果表明,用當時的望遠鏡去觀察不會再有任何結果。以後,因第二次世界大戰的干擾,奧本海默捲入到原子彈計劃中去。戰後,由於大部分科學家被吸引到原子和原子核尺度的物理中去,因而引力坍縮的問題被大部分人忘記了。1967年,劍橋的一位研究生約瑟琳·貝爾發現了天空發射出無線電波的規則脈沖的物體,這對黑洞的存在的預言帶來了進一步的鼓舞。起初貝爾和她的導師安東尼·赫維許以為,他們可能和我們星系中的外星文明進行了接觸。在宣布他們發現的討論會上,他們將這四個最早發現的源稱為LGM1-4,LGM表示「小綠人」(「Little Green Man」)的意思。最終他們和所有其他人的結論是這些被稱為脈沖星的物體,事實上是旋轉的中子星,這些中子星由於在黑洞這個概念剛被提出的時候,共有兩種光理論:一種是牛頓贊成的光的微粒說;另一種是光的波動說。由於量子力學的波粒二象性,光既可認為是波,也可認為是粒子。在光的波動說中,不清楚光對引力如何響應。但是如果光是由粒子組成的,人們可以預料,它們正如同炮彈、火箭和行星那樣受引力的影響。起先人們以為,光粒子無限快地運動,所以引力不可能使之慢下來,但是羅麥關於光速度有限的發現表明引力對之可有重要效應。1783年,劍橋的學監約翰·米歇爾在這個假定的基礎上,在《倫敦皇家學會哲學學報》上發表了一篇文章。他指出,一個質量足夠大並足夠緊致的恆星會有如此強大的引力場,以致於連光線都不能逃逸——任何從恆星表面發出的光,還沒到達遠處即會被恆星的引力吸引回來。米歇爾暗示,可能存在大量這樣的恆星,雖然會由於從它們那裡發出的光不會到達我們這兒而使我們不能看到它們,但我們仍然可以感到它們的引力的吸引作用。這正是我們稱為黑洞的物體。 事實上,因為光速是固定的,所以,在牛頓引力論中將光類似炮彈那樣處理不嚴謹。(從地面發射上天的炮彈由於引力而減速,最後停止上升並折回地面;然而,一個光子必須以不變的速度繼續向上,那麼牛頓引力對於光如何發生影響。)在1915年愛因斯坦提出廣義相對論之前,一直沒有關於引力如何影響光的協調的理論,之後這個理論對大質量恆星的含意才被理解。觀察一個恆星坍縮並形成黑洞時,因為在相對論中沒有絕對時間,所以每個觀測者都有自己的時間測量。由於恆星的引力場,在恆星上某人的時間將和在遠處某人的時間不同。假定在坍縮星表面有一無畏的航天員和恆星一起向內坍縮,

❼ 誰提出了黑洞理論

是霍金
1976年,霍金稱自己通過計算得出結論,他認為黑洞在形成過程中,其質量減少的同時還不斷在以能量的形式向外界發出輻射。這就是著名的「霍金輻射」理論。但是,理論中提到的黑洞輻射中並不包括黑洞內部物質的任何信息,一旦這個黑洞濃縮並蒸發消失後,其中的所有信息就都隨之消失了。這便是所謂的「黑洞悖論」。
這種說法與量子力學的相關理論出現相互矛盾之處。因為現代量子物理學認定這種物質信息是永遠不會完全消失的。近30年來,霍金試圖以各種推測來解釋這一自相矛盾的觀點。霍金曾表示,黑洞中量子運動是一種特殊情況,由於黑洞中的引力非常強烈,量子力學在此時已經不再適用了。但是霍金的這種說法並沒有得到科學界眾多持懷疑態度學者的信服。
據《每日電訊報》報道,7月21日,在愛爾蘭都柏林舉行的「第17屆國際廣義相對論和萬有引力大會」上,英國傳奇科學家斯蒂芬·霍金教授將宣布他對宇宙黑洞的最新研究結果:黑洞並非如他和其他大多數物理學家以前認為的那樣,對其周遭的一切「完全吞食」,事實上被吸入黑洞深處的物質的某些信息實際上可能會在某個時候釋放出來。

目前由於霍金的學術論文還沒有發表,一切都難有定論。對於1974年提出的「霍金輻射」理論,在學術界得到了廣泛的肯定,這一理論為黑洞研究做出了傑出的貢獻,霍金教授也因此受到學術界的推崇,但他的新理論是否正確還要經過多方的驗證。對於黑洞的研究也如是,從最初提出黑洞概念至今已經有200多年的歷史,上世紀60年代開始的黑洞研究熱潮也已經持續了近半個世紀,但時至今日黑洞仍然還是一個謎,人們相信黑洞的存在,期待著有一天能夠徹底破解黑洞之謎。