當前位置:首頁 » 證券市場 » 債券久期風險分析
擴展閱讀
股票投資經濟學 2021-06-17 16:24:20

債券久期風險分析

發布時間: 2021-05-05 20:38:54

Ⅰ 如何利用久期和凸性 衡量債券的利率風險

久期和凸性是衡量債券利率風險的重要指標。很多人把久期簡單地視為債券的到期期限,其實是對久期的一種片面的理解,而對凸性的概念更是模糊。在債券市場投資行為不斷規范,利率風險逐漸顯現的今天,如何用久期和凸性量化債券的利率風險成為業內日益關心的問題。

久期

久期(也稱持續期)是1938年由

F.R.Macaulay提出的,用來衡量債券的到期時間。它是以未來收益的現值為權數計算的到期時間。其公式為

其中,P=債券現值,Ct=每年支付的利息,y=到期收益率,n=到期期數,M=到期支付的面值。

可見久期是一個時間概念,是到期收益率的減函數,到期收益率越高,久期越小,債券的利率風險越小。久期較准確地表達了債券的到期時間,但無法說明當利率發生變動時,債券價格的變動程度,因此引入了修正久期的概念。

修正久期

修正久期是用來衡量債券價格對利率變化的敏感程度的指標。由於債券的現值
對P求導並加以變形,得到:

我們將
的絕對值稱作修正久期,它表示市場利率的變化引起的債券價格變動的幅度。這樣,不同現值的券種就可以用修正久期這個指標進行比較。

由公式1和公式2我們可以得到:

在某一特定到期收益率下,P為常數,我們記作P0,即得到:

由於P0是理論現值,為常數,因此,債券價格曲線P與P
/P 0有相同的形狀。由公式7,在某一特定到期收益率下,P /P
0的斜率為修正久期,而債券價格曲線P的斜率為P0×(修正久期)。

修正久期度量了收益率與債券價格的近似線性關系,即到期收益率變化時債券價格的穩定性。修正久期越大,斜率的得絕對值越大,P對y的變動越敏感,y上升時引起的債券價格下降幅度越大,y下降時引起的債券價格上升幅度也越大。可見,同等要素條件下,修正久期小的債券較修正久期大的債券抗利率上升風險能力強,但抗利率下降風險能力較弱。

但修正久期度量的是一種近似線性關系,這種近似線性關系使由修正久期計算得出的債券價格變動幅度存在誤差。如下圖,對於債券B′,當收益率分別從y上升到y1或下降到y2,由修正久期計算出來的債券價格變動分別存在P1′P1"和P2′P2"的誤差。誤差的大小取決於曲線的凸性。

市場利率變化時,修正久期穩定性如何?比如上圖中,B′和B"的修正久期相同,是否具有同等利率風險呢?顯然不同。當y變大時,B"價格減少的幅度要小,而當y變小時,B"價格變大的幅度要大。顯然,B"的利率風險要小於
B′。因此修正久期用來度量債券的利率風險仍然存在一定誤差,尤其當到期收益率變化較大時。凸性可以更准確地度量該風險。

凸性

利用久期衡量債券的利率風險具有一定的誤差,債券價格隨利率變化的波動性越大,這種誤差越大。凸性可以衡量這種誤差。

凸性是對債券價格曲線彎曲程度的一種度量。凸性越大,債券價格曲線彎曲程度越大,用修正久期度量債券的利率風險所產生的誤差越大。嚴格地定義,凸性是指在某一到期收益率下,到期收益率發生變動而引起的價格變動幅度的變動程度。

根據其定義,凸性值的公式為:

凸性值
=

凸性值是價格變動幅度對收益率的二階導數。假設P0是理論現值,則凸性值=

應用

由於修正久期度量的是債券價格和到期收益率的近似線性關系,由此計算得出的債券價格變動幅度存在誤差,而凸性值對這種誤差進行了調整。

根據泰勒系列式,我們可以得到
的近似值:

這就是利用修正久期和凸性值量化債券利率風險的計算方法。我們可以看到,當y上升時, 為負數,若凸性值越大,則
的絕對值越小;當y下降時,為正數,若凸性值越大,則越大。

因此,凸性值越大,債券利率風險越小,對債券持有者越有利;而修正久期具有雙面性,具有較小修正久期的債券抗利率上升風險較強,而當利率下降時,其價格增幅卻小於具有較大修正久期債券的價格增幅。

國債21國債(15)和03國債(11)為例,兩券均為7年期固息債,每年付息一次(附表為今年3月1日的有關指標)。

相比之下,21國債(15)具有較小的修正久期和較小的凸性值。如果收益率都上升50個基點,其價格變動幅度分別為:

21國債(15):

03國債(11):

可見經過對久期和凸性的簡單計算,可以比較直觀地衡量債券的利率風險。如果收益率變動幅度不大,則一般修正久期即可以作為度量利率風險的近似指標。

Ⅱ 什麼是債券久期如何用久期來進行免疫管理

債券久期是用來衡量債券持有者在收到現金付款之前,平均需要等待多長時間。主要用於以下三種用途: 1)當利率發生變化時,對債券價格變化或債券資產組合的價值變化作出估計。 2)對債券的現金流量特徵(如息票、期限和收益率等)進行評估,提出債券價格易變性的估計值。 3)達到或取得某種特定的債券資產組合目標。
債券久期等於持有期時,債券達到風險免疫.當預期利率將要下跌時(意味著債券價格上漲),此時應買入具有較長久期的債券;反之,當預期利率將要上升時,就應轉向購買較短久期的債券。

Ⅲ 債券的久期

所謂久期(Duration)是用來衡量債券持有者在收到現金付款之前,平均需要等待多長時間。期限為n年的零息票債券的久期就為n年,而期限為n年的附息票債券的久期則小於n年。
在債券投資里,久期被用來衡量債券或者債券組合的利率風險,一般來說,久期和債券的到期收益率成反比,和債券的剩餘年限及票面利率成正比,對於一個普通的附息債券,如果債券的票面利率和其當前的收益率相當的話,該債券的久期就等於其剩餘年限當一個債券是貼現發行的無票面利率債券,那麼該債券的剩餘年限就是其久期。債券的久期越大,利率的變化對該債券價格的影響也越大,因此風險也越大。在降息時,久期大的債券上升幅度較大;在升息時,久期大的債券下跌的幅度也較大。因此,投資者在預期未來升息時,可選擇久期小的債券。在債券分析中久期已經超越了時間的概念,投資者更多地把它用來衡量債券價格變動對利率變化的敏感度,並且經過一定的修正,以使其能精確地量化利率變動給債券價格造成的影響。修正久期越大,債券價格對收益率的變動就越敏感,收益率上升所引起的債券價格下降幅度就越大,而收益率下降所引起的債券價格上升幅度也越大。

Ⅳ 債券投資的久期是怎麼回事

實際上,久期在數值上和債券的剩餘期限近似,但又有別於債券的剩餘期限。在債券投資里,久期被用來衡量債券或者債券組合的利率風險,它對投資者有效把握投資節奏有很大的幫助。

一般來說,久期和債券的到期收益率成反比,和債券的剩餘年限及票面利率成正比。但對於一個普通的附息債券,如果債券的票面利率和其當前的收益率相當的話,該債券的久期就等於其剩餘年限。還有一個特殊的情況是,當一個債券是貼現發行的無票面利率債券,那麼該債券的剩餘年限就是其久期。這也是為什麼人們常常把久期和債券的剩餘年限相提並論的原因。

久期也稱持續期,是1938年由F.R .M a c a u l a y提出的。它是以未來時間發生的現金流,按照目前的收益率折現成現值,再用每筆現值乘以其距離債券到期日的年限求和,然後以這個總和除以債券目前的價格得到的數值。

在債券分析中,久期已經超越了時間的概念,投資者更多地把它用來衡量債券價格變動對利率變化的敏感度,並且經過一定的修正,以使其能精確地量化利率變動給債券價格造成的影響。修正久期越大,債券價格對收益率的變動就越敏感,收益率上升所引起的債券價格下降幅度就越大,而收益率下降所引起的債券價格上升幅度也越大。可見,同等要素條件下,修正久期小的債券比修正久期大的債券抗利率上升風險能力強,但抗利率下降風險能力較弱。

Ⅳ 久期較大的債券可防範利率上升風險是對的還是錯的

利率風險基本上就是擔心利率變動而造成債券價格影響的風險
在其中如果久期越大(Duration越大),利率變動影響的風險就會越顯著
所以久期較大的債券反而會是利率上升風險增加,
答案會是錯的!!^^
僅供參考!

Ⅵ 久期的債券投資

利用久期控制利率風險
在債券投資里,久期可以被用來衡量債券或者債券組合的利率風險,一般來說,久期和債券的到期收益率成反比,和債券的剩餘年限及票面利率成正比。對於一個普通的附息債券,如果債券的票面利率和其當前的收益率相當的話,該債券的久期就等於其剩餘年限當一個債券是貼現發行的無票面利率債券,那麼該債券的剩餘年限就是其久期。債券的久期越大,利率的變化對該債券價格的影響也越大,因此風險也越大。在降息時,久期大的債券上升幅度較大;在升息時,久期大的債券下跌的幅度也較大。因此,預期未來升息時,可選擇久期小的債券。在債券分析中久期已經超越了時間的概念,投資者更多地把它用來衡量債券價格變動對利率變化的敏感度,並且經過一定的修正,以使其能精確地量化利率變動給債券價格造成的影響。修正久期越大,債券價格對收益率的變動就越敏感,收益率上升所引起的債券價格下降幅度就越大,而收益率下降所引起的債券價格上升幅度也越大。
債券對利率變動的反應特徵如下:債券價格與利率變化反向變動;在給定利率變化水平下,長期債券價格變動較大,因此債券價格變化直接與期限有關;隨著到期時間的增加,債券對於利率變化的敏感度是以一個遞減的速度增長;由相同幅度的到期收益率的絕對變化帶來的價格變化是非對稱的,具體來說,在期限給定條件下,到期收益率降低引起的價格上升,大於到期收益率上升引相同幅度起的價格下降;票息高的債券比那些票息低的債券對利率的敏感性要低。
利用久期進行免疫
所謂免疫,就是構建這樣的一個投資組合,在組合內部,利率變化對債券價格的影響可以互相抵消,因此組合在整體上對利率不具有敏感性。而構建這樣組合的基本方法就是通過久期的匹配,使附息債券可以精確地近似於一隻零息債券。利用久期進行免疫是一種消極的投資策略,組合管理者並不是通過利率預測去追求超額報酬,而只是通過組合的構建,在迴避利率波動風險的條件下實現既定的收益率目標。在組合品種的設計中,除了國債可以選入組合外,部分收益率較高的企業債券及金融債券也能加入投資組合,條件是控制好匹配的久期。
但是,免疫策略本身帶有一定的假設條件,比如收益率曲線的變動不是很大,到期收益率的高低與市場利率的變化之間有一個平衡點,一旦收益率確實發生了很大的變動,則投資組合不再具有免疫作用,需要進行再免疫,或是再平衡;其次,免疫嚴格限定了到期支付日,對於那些支付或終止期不能確定的投資項目而言並不是最優;再次,投資組合的免疫作用僅對於即期利率的平行移動有效,對於其他變動,需要進一步拓展應用。
利用久期優化投資組合
進行免疫後的投資組合,雖然降低了利率波動的風險,但是組合的收益率卻會偏低。為了實現在免疫的同時也能增加投資的收益率,可以使用回購放大的辦法,來改變某一個債券的久期,然後修改免疫方程式,找到新的免疫組合比例,這樣就可以提高組合的收益率。但是,在回購放大操作的同時,投資風險也在同步放大,因此要嚴格控制放大操作的比例。

Ⅶ 債券的久期(ration)究竟是怎麼回事啊請用通俗易懂的方式解釋一下。萬分感謝!

久期(Duration),又稱為「持續期」,解釋有:

1、是一個很好的衡量債券現金流的指標;

2、考量債券時間維度的風險,回收現金流的時間加權平均;

3、衡量債券價格對基礎利率將變化敏感程度的指標;

4、以現金流現值為權重的平均到期時間。

在其券面上,一般印製了債券面額、債券利率、債券期限、債券發行人全稱、還本付息方式等各種債券票面要素。其不記名,不掛失,可上市流通。

實物債券是一般意義上的債券,很多國家通過法律或者法規對實物債券的格式予以明確規定。

(7)債券久期風險分析擴展閱讀:

債券優點

1、資本成本低

債券的利息可以稅前列支,具有抵稅作用;另外債券投資人比股票投資人的投資風險低,因此其要求的報酬率也較低。故公司債券的資本成本要低於普通股。

2、具有財務杠桿作用

債券的利息是固定的費用,債券持有人除獲取利息外,不能參與公司凈利潤的分配,因而具有財務杠桿作用,在息稅前利潤增加的情況下會使股東的收益以更快的速度增加。

3、所籌集資金屬於長期資金

發行債券所籌集的資金一般屬於長期資金,可供企業在1年以上的時間內使用,這為企業安排投資項目提供了有力的資金支持。

4、債券籌資的范圍廣、金額大

債券籌資的對象十分廣泛,它既可以向各類銀行或非銀行金融機構籌資,也可以向其他法人單位、個人籌資,因此籌資比較容易並可籌集較大金額的資金。

Ⅷ 什麼是久期,如何理解久期,債券價值屬性與久期的關系是什麼

一般來說,久期和債券的到期收益率成反比,和債券的剩餘年限及票面利率成正比.對於一個普通的附息債券,如果債券的票面利率和其當前的收益率相當的話,該債券的久期就等於其剩餘年限當一個債券是貼現發行的無票面利率債券,那麼該債券的剩餘年限就是其久期。債券的久期越大,利率的變化對該債券價格的影響也越大,因此風險也越大。在降息時,久期大的債券上升幅度較大;在升息時,久期大的債券下跌的幅度也較大。因此,投資者在預期未來升息時,可選擇久期小的債券。在債券分析中久期已經超越了時間的概念,投資者更多地把它用來衡量債券價格變動對利率變化的敏感度,並且經過一定的修正,以使其能精確地量化利率變動給債券價格造成的影響。修正久期越大,債券價格對收益率的變動就越敏感,收益率上升所引起的債券價格下降幅度就越大,而收益率下降所引起的債券價格上升幅度也越大。想投資債券的話,先積累點這方面的知識或者去理財教育社區或各大論壇看看別人是怎麼投資的會比較好,投資不要魯莽,像債券的話,投資要休閑根據自己的情況選擇合適的種類,收益高的相對風險也較大,同時也要考慮債券的流動性,時間點的把握也很重要,希望對你有幫助。

Ⅸ 債券久期是什麼意思影響債券久期的因素有哪些

久期表示了債券或債券組合的平均還款期限,它是每次支付現金所用時間的加權平均值,權重為每次支付的現金流的現值占現金流現值總和的比率。久期用D表示。久期越短, 風險越低;反之,久期 長, 風險 高。另外如果想要 學習一下,建議您可以去今日英才網校去找下 這方面課程學習一下,那上邊的課程 講的很詳細,也很便宜, 希望對你有所幫助。

Ⅹ 不從久期的角度分析,為什麼說債券票面利率越低,風險越大(照理說風險大會用更高利率來補償債權人啊)

投資者購買債券面臨的風險,主要是利率風險,就是利率變化對債券價格的影響。
對於票面利率低的債券,投資者的收益很難提前實現,更多地在於債券到期時、未來時刻的本金,提前獲得的利息收入(作為風險補償)很少,所以未來的一大筆現金流(本金),不確定性就更強。因此風險更大。
最極端的情況就是,沒有票面利息收入,即,零息債券,風險最大。