A. 什麼是債券的久期,修正久期和基點價值
1、債券久期是指由於決定債券價格利率風險大小的因素主要包括償還期和息票利率,因此需要找到某種簡單的方法,准確直觀地反映出債券價格的利率風險程度。
2、修正久期是對於給定的到期收益率的微小變動,債券價格的相對變動與其麥考利久期的比例。這種比例關系是一種近似的比例關系,以債券的到期收益率很小為前提。是在考慮了收益率的基礎上對麥考利久期進行的修正,是債券價格對於利率變動靈敏性的更加精確的度量。
3、基點價格值是指到期收益率變化一個基點,也就是0.01個百分點時,債券價格的變動值。基點價格值是價格變化的絕對值,價格變化的相對值稱作價格變動百分比,它是價格變化的絕對值相對於初始價格的百分比,用式子表示就是:價格變動百分比=基點價格值/初始價格。
應答時間:2020-12-09,最新業務變化請以平安銀行官網公布為准。
[平安銀行我知道]想要知道更多?快來看「平安銀行我知道」吧~
https://b.pingan.com.cn/paim/iknow/index.html
B. 債券息票率6%,每年付息,修正久期為十年,以800元售出。。。。
修正久期10年,那麼就是說利率上升1%,價格就下降10%。所以是80元。
C. 債券久期與如下說明因素呈正比關系
到期時間是與債券久期因素呈正比關系,而票面利率、付息頻率、到期收益率呈反比關系。
久期可以理解為在考慮資金時間成本後的資金回收速度,且這些實際上可以根據久期定理可以知道這些關系的(在其他條件相同情況下):票面利率越高會加快資金回收速度,使得久期變短;付息頻率越高也是會加快資金回收速度,主要是付息頻率越高,說明每次付息之間時間縮短,使得久期變短;到期收益率越高會加速未來現金流現值變少,現金流權數不變,使得計算久期公式中的分子數額減少速度快於分母,最終導致久期邊際減少;到期時間越長,久期越長正是久期定理之一。
D. 債券的久期(ration)究竟是怎麼回事啊請用通俗易懂的方式解釋一下。萬分感謝!
久期(Duration),又稱為「持續期」,解釋有:
1、是一個很好的衡量債券現金流的指標;
2、考量債券時間維度的風險,回收現金流的時間加權平均;
3、衡量債券價格對基礎利率將變化敏感程度的指標;
4、以現金流現值為權重的平均到期時間。
在其券面上,一般印製了債券面額、債券利率、債券期限、債券發行人全稱、還本付息方式等各種債券票面要素。其不記名,不掛失,可上市流通。
實物債券是一般意義上的債券,很多國家通過法律或者法規對實物債券的格式予以明確規定。
(4)債券的修正久期與付息頻率擴展閱讀:
債券優點
1、資本成本低
債券的利息可以稅前列支,具有抵稅作用;另外債券投資人比股票投資人的投資風險低,因此其要求的報酬率也較低。故公司債券的資本成本要低於普通股。
2、具有財務杠桿作用
債券的利息是固定的費用,債券持有人除獲取利息外,不能參與公司凈利潤的分配,因而具有財務杠桿作用,在息稅前利潤增加的情況下會使股東的收益以更快的速度增加。
3、所籌集資金屬於長期資金
發行債券所籌集的資金一般屬於長期資金,可供企業在1年以上的時間內使用,這為企業安排投資項目提供了有力的資金支持。
4、債券籌資的范圍廣、金額大
債券籌資的對象十分廣泛,它既可以向各類銀行或非銀行金融機構籌資,也可以向其他法人單位、個人籌資,因此籌資比較容易並可籌集較大金額的資金。
E. 債券修正久期
因為利率變動與資產價格負相關。
△P/P = -D/(1+r) * △r
所以負號表達了二者的負相關關系,望採納
F. 什麼是債券修正久期,具體怎麼計算 / 債券
你好,修正久期指的是對於給定的到期收益率的微小變動,債券價格的相對變動值,即delta_P/P .修正久期大的債券 , 利率上升所引起價格下降幅度就越大,而利率下降所引起的債券價格上升幅度也越大。可見,同等要素條件下,修正久期小的債券比修正久期大的債券抗利率上升風險能力強;但相應地,在利率下降同等程度的條件下,獲取收益的能力較弱。
計算公式為:
D*=D/(1+y/k) 其中D為麥考利久期,y為債券到期收益率,k為年付息次數。
G. 久期和債券的到期收益率是什麼關系
票面利率、到期時間、初始收益率是影響債券價格的利率敏感性的三個重要因素,它們與久期之間的關系也表現出一些規則。
1.保持其它因素不變,票面利率越低,息票債券的久期越長。
票面利率越高時,早期的現金流現值越大,占債券價格的權重越高,使時間的加權平均值越低,即久期越短。
2.保持其它因素不變,到期收益率越低,息票債券的久期越長。
到期收益率越低時,後期的現金流現值越大,在債券價格中所佔的比重也越高,時間的加權平均值越高,久期越長。
3.一般來說,在其它因素不變的情況下,到期時間越長,久期越長。
債券的到期時間越長,價格的利率敏感性越強,這與債券的到期時間越長久期越長是一致的。但是,久期並不一定總隨著到期時間的增長而增長。
H. 1)計算一個債券的修正久期、、請給出詳細解答過程
修正久期=麥考利久期÷[1+(Y/N)],
因為,在本題中,1+Y/N=1+11.5%/2=1.0575;
所以,正久期=13.083/1.0575=12.37163,D是最合適的答案。
麥考林久期(MAC DUR),修正久期(MOD DUR)分零息與付息債券,對於零息MAC DUR=到期時間(T),修正久期=T/[1+(Y/N)],Y表示年利率,N表計算復利次數。
對於付息債券,MAC DUR=每期支付折現除以現值乘與期數,修正久期=MAC/[1+(Y/N)]。
(8)債券的修正久期與付息頻率擴展閱讀:
修正久期是對於給定的到期收益率的微小變動,債券價格的相對變動與其麥考利久期的比例。這種比例關系是一種近似的比例關系,以債券的到期收益率很小為前提。是在考慮了收益率的基礎上對麥考利久期進行的修正,是債券價格對於利率變動靈敏性的更加精確的度量。
當投資者判斷當前的利率水平有可能上升時,集中投資於短期債券、縮短債券久期;當投資者判斷當前的利率水平有可能下降時,拉長債券久期、加大長期債券的投資,幫助投資者在債市的上漲中獲得更高的溢價。
修正久期定義:
△P/P≈-D*×△y+(1/2)*conv*(△y)^2
從這個式子可以看出,對於給定的到期收益率的微小變動,債券價格的相對變動與修正久期之間存在著嚴格的比例關系。所以說修正久期是在考慮了收益率項 y 的基礎上對 Macaulay久期進行的修正,是債券價格對於利率變動靈敏性的更加精確的度量。