當前位置:首頁 » 金融市場 » 大數據應用對信貸金融服務
擴展閱讀
股票投資經濟學 2021-06-17 16:24:20

大數據應用對信貸金融服務

發布時間: 2021-06-09 16:40:59

1. 大數據在金融業的應用可以發揮哪些作用

有了大數據,自然就要有大數據技術,即從各種各樣類型的巨量數據中,快速獲取有價值信息的技術,強調快,這是大數據技術與傳統數據挖掘技術的重要區別。
從巨量數據中提取的有價值信息,即是大數據在各個領域的具體運用,比如基於大數據進行客群的細分,進而提供定製化服務;基於大數據模擬現實環境,進而進行精準評估和預測;基於大數據進行產品和模式創新,降低業務成本、提升經營效率等等。

2. 大數據對金融企業有什麼幫助

善林金融指出,大數據金融有著傳統金融難以比擬的優勢,企業通過自己的徵信系統,實現信用管理的創新,有效降低壞賬率,擴大服務范圍,增加對小微企業的融資比例,降低了運營成本和服務成本,可以實現規模經濟。大數據還能夠通過海量數據的核查和評定,增加風險的可控行和管理力度,及時發現並解決可能出現的風險點,對於風險發生的規律性有精準的把握,將推動金融機構對更深入和透徹的數據的分析需求。另外,大數據金融擴展了企業的海量數據,讓企業更貼近消費者,了解消費者的真正需求,進一步增加客戶黏性。

3. 我是做金融的,想問一下大數據對金融行業有什麼價值

當然有數據支持,可以說所有的行業,都能夠很大幅度的提高精準率,無論是從成本還是從效果,都是大有裨益的。

要了解大數據優勢有哪,對我這個行業有哪些突出性的優勢。

誰是准確的目標受眾?如何在合適的時間、合適的地點、以合適的方式傳達給消費者正確的信息?隨著數據搜集、存儲、管理、分析、挖掘與應用的技術體系的發展,這些問題的答案已經可以顯現於眼前。

怎麼獲取數據:網民通過C2C的互動,C2B的互動,B2B的互動,實時生產數據。這些數據匯聚在一起,就能夠獲取到網民當下的情緒、行為、關注點和興趣點、歸屬地、移動路徑、社會關系鏈等一系列有價值的信息。原本分散的信息通過分析、挖掘具有了關聯性,了解用戶真實的態度和需求。

利用數據獲客:利用大數據做精準營銷的人群定向投放,根據人群的行為軌跡,再結合其他關聯數據,如社交屬性等數據來對投放人群進行標簽化管理。這樣才能使得廣告投放有千人千面的效果。

對於營銷來說,了解用戶、分析用戶尤為重要,而每年花在數據分析上的人力物力更是數不勝數。對於營銷來說,大數據更多的是支持,可以將更多的人力物力節省下來。

做數據精準獲客營銷,要找對獲客系統運營商大數據,需要了解請留言。

4. 如何運用大數據為徵信服務

二十多年間,伴隨著經濟體系的變革,我國企業信貸體系發生了重大的變化,由以大型企業為主要貸款群轉變為中、小、微企業成為貸款主力軍。面對新的貸款群體,銀行等資金機構無法充分地給予資金,造成了日益嚴重的「中小微企業融資困境」。小微企業貸款的瓶頸是「缺乏高效率、低成本、高精度基礎徵信服務」。在此背景下,小宇宙給大家講解幾種大數據徵信的探索之路。

一、 大數據徵信誕生的背景

二十多年間,伴隨著經濟體系的變革,我國企業信貸體系發生了重大的變化,由以大型企業為主要貸款群轉變為中、小、微企業成為貸款主力軍。面對新的貸款群體,銀行等資金機構無法充分地給予資金,造成了日益嚴重的「中小微企業融資困境」。林毅夫早在2001年《經濟研究》發表的文章《中小金融機構發展與中小企業融資》,認為小型金融機構更適合服務於小企業,奠定了我國之後大力推動中小型金融機構發展的理論基礎。城市商業銀行、農村信用社、小額貸款公司紛紛成立,帶動全社會的小微企業貸款產品激增,資金供給量大大提高,數年間小微企業融資環境得到了很大的改變。

然而,小型資金機構的出現並沒有從根本上解決小微融資的困境,相對於大企業,小微企業對資金的佔用比例極低(約30%),與小微企業對GDP的貢獻(約70%)極不相稱。近年來,小微企業的生存壓力不斷增大,傳統行業競爭激烈,利潤空間被不斷擠壓,賒銷使小微企業面臨殘酷的資金周轉壓力,因資金鏈斷裂倒閉的小微企業比比皆是。這種情況更加劇了資金機構「惜貸」行為,對小微企業貸款的負面預期導致小微企業貸款收縮,小微企業、小型金融機構兩方陷入惡性循環。小微企業和小型資金機構處於整個信貸體系的最底層。

小微企業信貸的困局看似很復雜,牽扯宏觀、微觀各方的行為,但實際我們看所有小微信貸的難點,全部集中於一點:資金方認為無法看清小微企業的風險,自然不能放款,這稱之為「信息不對稱風險」;既然無法識別風險,資金方制定了迴避小微借款的貸款政策,形成了「逆向選擇」,小微信貸就此止步,陷入無錢可貸的困境。無論是大型銀行,還是小型資金機構,都面臨同樣的問題,所以都對小微信貸無計可施。這個問題可以籠統地稱為社會誠信體系欠缺導致信用風險高。

信用體系欠缺導致資金方難以看清小企業實際情況,這有著現實的原因。我國的小微企業內部管理是很隨意的,很多交易不會以規范的方式記錄下來。正規的資金方需要經過嚴密的盡職調查第一還款來源(依靠經營償還借款),輔之以第二還款來源(抵押品),才能做出決策。這個過程可以稱之為「徵信」或者「信用審核」。前面我們已經分析過,由於資金方缺乏有效的可利用於小微企業的信用調查、審核手段,對於小微貸款項目,這個過程不但冗長成本很高,而且通常難以找到准確、真實、有價值的信息,阻礙了小企業信貸的成功率性。同樣,對於那些私募資金機構、民間資金機構,本來沒有能力進行相關調查,放貸只能靠感覺和其他手段,風險更大。

由此,我們可以得出結論:小微企業貸款的瓶頸是「缺乏高效率、低成本、高精度基礎徵信服務」。可以想像,如果資金方有能力以一種低成本的方式准確識別小企業是否可信,再加以輔助風控措施(擔保、抵押等),小微業務將變得有利可圖,資金通道可以就此而打開,小微信貸就會變得順暢而有序。大數據徵信正是在這種社會背景下應運而生的。

二、 大數據徵信技術的幾條探索之路

隨著大數據技術在各行業的深入應用,運用大數據為徵信打開一條通路,逐漸成為了社會主流的意識。信用服務從業者、政府信用辦公室、互聯網金融公司對此進行了不懈的探索,期待找到一種可以針對於小微企業的量化深度評判方法。下面我們分析一下當前主要幾種方法的特點。

(一) 量化信用評價(評級)模型(由內而外型)

多年以來,信貸機構、徵信機構和評級機構一直期待著能夠形成一個量化信用模型,將各方面的數據導入模型之後,能夠自動生成評級結果,提示是否可以放貸。經過長期的探索、研究、試驗之後,這個理想的模型一直沒有出爐。我國部分有實力的資金方引進日本、美國知名咨詢公司的信用分析模型,但這些模型對我國的實際情況的適用性很差,沒有達到期待的效果——導入相關數據後即可對企業償還能力和償還意願作出可靠的判斷。

國外的先進模型以及國內機構的多年模型探索,都沒有形成一個普遍性有效的評判小企業的量化模型,主要原因是我國小企業的數據質量低下。由於無論國內外使用的企業數據主要是財務報表數據,而財務數據是會計師事務所出具的。我國誠信體系存在巨大缺失,會計師事務所出具的審計報告幾乎是製造出來的,其可信度很低。對於誠信企業,這份報告具有較大的參考性,而對於蓄意騙貸企業,也未必能夠從審計報告中看出破綻。各種量化模型的探索之所以沒有得到令人滿意的結果,正是由於其所依據的數據質量是低下的,所以無論如何也不可能得出真正有價值的信息。這種方法基本上宣告了是無效的。

(二) 外部資料庫接入(由外向內)模式

在企業內部數據質量不佳的條件下,各類機構開始向外尋找廣度更大、更加可靠的數據來源,例如政府各部門的數據,稅務系統數據、工商信息、行業主管單位業務數據、海關數據等,各行業協會的經營性數據等,也有在電商平台上積累的交易數據(如淘寶上的交易數據)。基於這些數據查找與某企業相關的數據並進行綜合分析。我們稱之為「由外向內型」的數據體系,也就是企業徵信服務不再是從被評價的企業提取數據,而是運用外部數據體系實現。

這種模式的優勢在於:資料庫系統形成之後,單個企業的徵信信息採集將非常容易,徵信服務的邊際成本極低,且速度極快,直接帶來的好處是徵信服務的收費將非常低廉,並且服務量很大。但這種模式也存在自身的劣勢:對接多部門數據入口是一項巨大的系統工程,建設、磨合的成本很高,當前除了工商信息可以達到全國聯網外,其他部門信息均在分布在市級部門,整合工作相當巨大。另外,也是最嚴重的問題還是數據質量。我國的小企業對外報送的經營信息具有很大的隨意性,都是根據具體需要編出來的,例如為了避稅、貸款或者其他目的。有些地區政府為了鼓勵當地企業發展,給予很高的納稅優惠,比如核定一個固定納稅額度,這樣的話就不會要求企業如實報送。因此,從各部門搜集到的數據恐怕與實際情況相差較遠,如果用做徵信服務,可信性也會遭到質疑。同時,一個企業產生的數據並非全部對外報送,事實上,對外報送的數據僅佔一小部分,如基礎財務報表、應納稅額等,而大部分的能夠說明企業情況的數據沉澱在企業內部,如供銷信息、產品品類、資金流轉等,這些數據無法通過外部資料庫找到。外部資料庫的數據量雖大,但針對於某單一企業,卻顯得容量不足了。如果是電商內部生態圈數據也相對片面,因為一個企業不會僅僅通過一個電商渠道銷售,單一電商交易數據顯然是不夠全面的。

如果用外部數據編織數據網的話,這張網將是巨大的,幾乎可以覆蓋全國的企業。但由於關於某一企業的數據量不足,這張網的數據線條比較稀疏,也就是數據網眼很大,多數關於企業的有價值信息都被漏掉了,有效信息過小,不足得出可信的結論。這就是由外向內建立徵信數據體系的探索。

自國務院交辦發改委建立全國信用體系以來,各級政府信用辦公室主導將轄區內各個掌握數據的政府部門連接起來,形成一個統一的信用信息平台,由專業的第三方公司或者設立下屬公司運營,出具滿足社會需求的徵信報告。除政府外,也有社會徵信機構做類似的事情,接入一些政府端數據並運營。從目前的發展來看,這類徵信服務當前能夠提供的最主要的信息是工商注冊類的信息,以及少量的各部門備案信息。這類徵信服務提供的信息簡單,收費低廉,但對於信貸業務而言,基本上沒有發揮太大的作用。

(三) 單體企業數據徵信服務(由內向外)

另外一種數據徵信服務,是從企業內部挖掘有用信息,從這個角度來說,這種方法和傳統的徵信方法是一致的,不同的是採集的信息和分析模式。現在有些專業徵信公司也在研發由內而外的數據徵信方法。這種方法利用的數據量不像社會徵信的數據量那麼大(因此稱「小數據」),但與貸款相關度很高,再保證真實度的基礎上,可以得到很多有價值的信息(「大信息」),並且均為信貸業務中資金方最關注的信息。該項服務可以幫助資金方在最短的時間內評判該企業是否能達到可以貸款的條件,為資金方節約大量的調研時間和成本,適應小微企業融資的效率要求和風控要求。

數據徵信雖然應用的基礎數據量不像政府部門數據那樣多,那樣大,但採集到的都是相關度最高的信息,可以捕捉企業真實經營情況和償還能力。如果從數據網的角度看,這種方法形成的數據網較小(只適用於某單個企業),但數據「網眼」恰好適合保留住關於該企業的大量有價值信息,而篩查掉無關信息、干擾信息,形成深度、高質量的徵信報告,為信貸決策提供可靠依據。

這種數據徵信服務的優勢是,啟動快,無需長期建設成本,很好地適應我國現有的信息基礎和社會現實。其難點在於如何取得借款企業的充分信任因此願意提供深度數據。

企業數據徵信技術已非一個技術上的構想,而是已經開始了大量的實踐。數據徵信已經在擔保業務、小貸業務中發揮了重要作用,幫助擔保公司和小貸公司排查風險、清晰評估項目、提高業務效率。相信隨著市場環境的變化,將有越來越多的人意識到這種技術的價值。

5. 大數據對互聯網金融的發展有什麼作用

自互聯網金融被廣而告之以後,大家就一直在被灌輸大數據在互聯網金融發展中的作用巨大,甚至最近更有專家說大數據是互聯網金融發展的加速器。但是似乎並沒有一個系統的說法,大數據具體有什麼用,我們只知道互聯網金融確實是其中的獲益者之一,下面且聽聽通金魔方分析師的見解。

我們首先從互聯網金融的含義生對大數據有個簡單的了解。正如互聯網金融之父謝平所言,所謂的互聯網金融,並非是簡單的將互聯網和金融進行疊加。

正確的理解應該是基於互聯網應用的特殊技術,推動了全新的商業模式,產品服務,對金融領域產生的顛覆性變革。在這其中,大數據則充當了很重要的推手。接下來我們來看一下大數據在互聯網金融發展中的作用體現。

精準的用戶分析

大數據的首要作用就是在於它能夠對用戶進行准確的分析,然後幫助互聯網金融找到合適的目標用戶,進而實現精準營銷。

在目前的互聯網金融領域,很多新興的企業,大多以做貸款或者金融衍生產品為主。其主打的賣點主要在於較高的投資收益或者較低的手續費優惠。但是在競爭日益加劇的市場環境下,由於不能保證資金流穩定,或者客戶粘性而倒閉的企業隨處可見。

據相關數據顯示,截止2013年底,中國境內共有450家P2P公司,其中有的甚至在創立幾天內即宣布倒閉。在這樣的基礎之上,實現精準營銷才是這些企業唯一的出路,這也正是大數據的作用所在。

雖然互聯網金融的發展仍然處於起步階段,但是卻已經有了相當豐富的成熟案例。比如通過定向技術查看用戶近期瀏覽過的理財網站,通過關鍵詞,瀏覽數據建立用戶模型,從而實現優化產品的實時推薦頻度,以便最大限度的鎖定有效用戶等。

幫助金融企業風險防控

除了以上的首要作用之外,大數據還能夠幫助金融企業加強風險的可控性。在精細化管理方面助推了互聯網金融,尤其是信貸服務的發展。

比如通過對大量網路交易及行為數據的分析,可以為用戶的信用評估提供可靠的依據。這些信用評估可以幫助金融企業在用戶的還款意願和能力方面做出較為准確的結論,以便決定是否繼續為該用戶提供快速授信或者現金分期等服務。從而最大限度的降低金融企業的業務風險。

當然,我們對於個人用戶或者企業用戶信用好壞的評定取決於諸多因素,但是我們也可以從這諸多因素中找到相應的數據。比如我們要尋找這個用戶的整體收入,固定資產,性格特點甚至是行為習慣等,那麼我們就可以從網上銀行,電商,社交網路,甚至招聘和婚介網站等地方獲取。

大數據的作用在這裡面得以體現的最關鍵的一點就是,這些所謂的數據往往都是以動態變數的形式存在的,而我們要想以此為依據獲得准確的信用評級,則更要倚重於大數據的持續分析功能。

通過上面的分析,我們也不得不承認大數據在互聯網金融發展中作用巨大,只不過在現在這個互聯網金融的起步階段,大數據作用的發掘仍不算完整,我們只能一步一步的在不斷的發展中發現它的好。

6. 大數據技術在金融行業有哪些應用前景

大數據金融市場前景廣闊,深度開發大數據金融工具,或將重構整個金融行業。預計未來5到10年,金融大數據產業將迎來黃金增長期,大數據也將成為助推「大眾創業、萬眾創新」浪潮的有力抓手。
據《大數據金融行業市場前瞻與投資分析報告》數據顯示,2016年我國大數據金融市場規模為15.84億元,隨著政策逐步實施與落地,以大數據為核心手段、核心驅動力的產業金融,將邁入時代發展正軌成為主流趨勢,預計2018年中國金融大數據應用市場會突破100億元,金融業開始進入了大數據時代快車道。
大數據金融作為一個綜合性的概念,在未來的發展中,企業坐擁數據將不再局限於單一業務,第三方支付、信息化金融機構以及互聯網金融門戶都將融入到大數據金融服務平台中,大數據金融服務將在各家機構各顯神通的基礎上,實現多元業務的融合。
伴隨互聯網金融縱深發展,大數據優勢越加凸顯。作為互聯網金融創新的驅動力,大數據金融帶來的方式革新,未來走向精細化和專業化。今後大數據金融行業的努力方向,應該是以完備的大數據為基礎,基於用戶需求提供智能化一站式產品購買及定製化服務,以及數據挖掘、數據整合、數據產品、數據應用及解決方案等。

7. 大數據在金融領域中有哪些應用

大數據在金融領域中有哪些應用?應用很廣,定價、授信、風控領域尤其多,我這邊主要用到的分析軟體是單位的帆軟FineBI系統,應用案例隨便說兩個:
車險。其實根據車主的日常行車路線、里程、行車習慣、出險記錄、職業、年齡、性別,可以給出非常不同的定價。比如一個開中級車,每天固定路線往返幾公里通勤的熟練女白領車主,和一個開同樣車型每天在珠三角或者長三角跑生意的中年暴躁小老闆車主,假設後者出險概率是前者的3倍,那麼完全可以定3倍於前者的價格(商業部分)。對於保險公司,前者才是優質客戶,後者做了生意也是賠錢貨,不如趕到競爭對手那裡去。

貸款。現在各種小額貸款、消費貸款、供應鏈金融,都是在吃4大行懶得吃的散客市場,之所以他們懶得吃,就是怕麻煩。最麻煩的就是授信環節,對於一個沒有固定資產等擔保物的客戶,能授信多少額度是個問題。淘寶能做小微是因為商家的流水在他們手裡,白領的消費貸敢做是因為有穩定的現金流收入。但除了淘寶可以做到比較准確的模型,其他的業務都非常的粗放,基本每個領域都是根據幾條死規則來做業務。這意味著這個市場還有很大的潛力可以挖掘,比如一個小老闆,其實風險不大,他需要100w周轉,但你沒把握估算他的風險,只敢貸50w出去,就少賺了那50w的利息。

8. 大數據怎樣影響著金融業

正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。
中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。
首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。
其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。
第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,花旗、富國、UBS等先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行360度評價,計算動態違約概率和損失率,提高貸款決策的可靠性。