当前位置:首页 » 信托交易 » 人工智能在信托行业
扩展阅读
股票投资经济学 2021-06-17 16:24:20

人工智能在信托行业

发布时间: 2021-05-08 07:39:38

『壹』 人工智能股票有哪些

人工智能股票有浙大网新[600797]、*ST猛狮[002684]、赢时胜[300377]等。

1、浙大网新[600797]

深圳市赢时胜信息技术股份有限公司主营业务是为金融机构的资产管理和资产托管业务整体信息化建设提供应用软件及增值服务。公司主要产品包括资产托管系列软件、资金交易风险管理系列软件、财务估值核算软件、金融资投资绩效及风险管理软件、投资交易管理软件、金融数据中心系列软件等;截止2019年6月30日,公司已取得283项软件产品著作权。

『贰』 目前人工智能在金融行业属于什么水平

人工智能的产生和发展,不仅促进金融机构服 务主动性、智慧性,有效提升了金融服务效率,而且提高了金融机构风险管控能力,对金融产业的创新发展带来积极影响。国内的跟进速度也比较快,阿尔法象这几年也一直致力于搭建自己的AI风控引擎系统,帮助金融机构实现以数据驱动的风险管控、精准营销和运营优化。

『叁』 目前人工智能在金融领域面临哪些问题

人工智能是一个工具,一个技术,它要落地还是要跟业务紧密结合在一起。1、需要与业务紧密合作,才能把它落地。2、金融这个领域是非常求稳定、求安全的,对风险的要求非常高。3、人工智能很多技术是一个黑盒子,很难解释,但在金融行业,很多时候跟客户服务的时候,需要有很清晰的解释。4、金融行业和医疗行业的监管都非常严。平安科技作为人工智能发展的领先企业,在金融行业和医疗行业都有很好的探索和应用。

『肆』 人工智能在金融领域有何前景

参考前瞻 产业研究院《2016-2021年中国人工智能行业市场前瞻与投资战略规划分析报告》显示,随着互联网时代的深入发展,我们获取的各种数据都在无限膨胀,远远超过了人类大脑的处理能力,于是机器学习技术成为更利于发展的投资策略。以机器之手在互联网中抓取一个领域的数据和信息,将这些信息通过人工智能系统进行细致的分拣和筛选,进而得出最终的结论和决策。之后再将这些已被梳理好的决策分析反馈给该领域工作人员。
以智能客服为例,2015年双11,蚂蚁金服95%的远程客户服务已经由大数据智能机器人完成,同时实现了100%的自动语音识别。正是依靠人工智能的帮助,蚂蚁金服客户中心在双11的整体服务量超过500万人次,客服人员的精力可以更好的集中到处理复杂类客户问题和工作。

蚂蚁金服科学家打造的人工智能机器人客服大军,包括了MyRobot、服务宝等几项核心人工智能技术。

但目前人工智能在金融领域完全取代人的机会还很小。金融是关于人价值交换的业务,核心还是人,从某种程度上来说,人工智能可以促使人们的就业往价值链更上层的工作迁移。

『伍』 人工智能出现在金融领域,股票,期货等市场,是人工智能间的博弈还是人智能辅助人类

这个问题很好哩。
人工智能在金融领域的应用范围很广,包括风控,客户挖掘等等...
在不同的应用场景下,人工智能与人工智能之间,人工智能与人之间有辅助、有博弈。。

『陆』 目前人工智能在金融行业属于什么水平

资产管理领域应用AI可以把它分成三个子概念:智能投顾、智能投研、智能投资。每一类的功能偏向有所不同,涉及的AI算法也会不尽相同。
1)智能投顾
典型功能包括:客户偏好分析、市场分析提醒、智能配置组合、交易执行、组合优化等。
典型AI算法包括:知识图谱、机器学习、智能语言处理技术、图像识别等。
这方面有代表性的应该是美国的Wealthfront和Personal Capital两家公司。国内做得出彩的目前看来没有。铂诺希望作为一个先行者,在客户偏好和市场提醒这两项功能上着重发力,打造一个前端的智能顾问,帮助客户更好的了解自己和了解市场。
2)智能投研
典型功能包括:股票市场信息的深度挖掘分析、投资策略的量化与回测等。
这些功能的过程本质:数据获取、特征提取、数据转换、模型训练、模型选择、模型预测。
典型AI算法包括:监督学习算法:(1)回归算法:决策树、随机森林等; (2)分类算法:二次判别分析、K最近邻算法等; (3) 降维算法:偏最小二乘法等。
无监督学习算法:(1) 聚类算法:K均值、分层等; (2) 降维算法:主成分分析、独立成分分析等。
3)智能投资
典型功能包括:量化交易,智能风控
典型AI算法包括:在线过程分析(OLAP)、聚类、滤波、神经网络、预测模型等。
这部分同样是外国的企业走得比较靠前,07年开始Rebellion research就开始采用贝叶斯网络算法进行智能投资相关的工作了。
国内的跟进速度也比较快,铂诺这几年也一直致力于搭建自己的智能风控平台。

『柒』 人工智能如何赋能金融行业发展

人工智能如何赋能金融行业发展,主要体现以下几个方面:
构建客户画像,促进客户管理
结合人脸核身、文字识别、语音识别等人工智能产品,打造一个统一注册、统一认证的安全高效平台。为银行及保险客户建立优质的客户大数据和知识图谱打下基础。
利用AI人工智能,可以大程度地简化收集客户有效信息的过程,包括他(她)目前持有的保险单的详细信息、部分财务信息以及网上可查阅的客户帐户中的个人信息等。帮助构建客户的人物画像,对客户进行分层次管理,以便向其提供最为优质的服务。
准客户分析,智能推荐产品
根据用户基本信息、用户行为、消费行为、兴趣、关注、常住位置、实时位置、app行为、信用评分等纬度,通过大数据平台处理后建立用户群体画像。经过客群画像的数据积累,分析不同客户群体的基础标签,提炼出用户特征,为客户推荐与其需求最匹配的产品,实现精准营销。
数据有效整合,提供实时决策
接收数据源后,根据后台的数据计算处理程序,实现数据的实时共享和投放,包括智能核保、智能核赔、金牌话术及实时大屏演示等。利用人工智能对数据进行整合并应用,可以大幅缩减核保时间,降低冗杂劳务开销,从而降低成本。
打破数据孤岛,建立大数据风控
AI人工智能,具有超强的收集,处理、整合数据的能力,通过运用大数据构建模型的方法,对金融企业客户借贷进行风险管理控制和提示。收集贷款人的相关信用信息后,可通过预测、分析其近来的信用变动情况,及时做出相应提醒。
其次,整合金融行业的主流机构数据,利用集团公司的数据及行业数据形成共享,打破数据孤岛,更快、更精准的识别信贷黑名单。
展望整个金融行业的未来,尤其是在互联网保险及银行领域,随着AI深度学习的不断发展,人工智能的运用将会越来越广泛,越来越明显。
人工智能的开发最主要的目的就是为了替人类做复杂、有危险难度、重复枯燥等的工作,所以人工智能是以人类的结构来设计开发的,人工智能在得到较好的开发后国家也是全力给予支持。人工智能的开发主要也是为了帮助和便利人类的生活。所以人工智能的定义一直以来都是以“协助人类”而存在的。人工智能概念的火热促进了不少行业的兴起,比如域名,许多相关的.top域名已经被注册。