㈠ BP神经网络预测,不会看结果,请大神帮忙,谢谢
隐藏层神经元个数,你慢慢调试到最佳就好,虽然有经验公式也不一定有用。
你输入输出有12年的数据,但是你把这12年数据,其中多少年的数据拿来做网络训练用,多少年的拿来测试用呢?你没说明啊
你应该是拿3年数据进行网络训练,9年拿来测试网络了,所以有九年的结果。建议你最好前九年数据拿来训练网络,最后三年用来测试网络,输出结果。
望采纳,有问题继续讨论
㈡ BP神经网络做数据预测,预测出来结果感觉不对,求大神指导
作预测,曲线要拟合。看理论值与实际的相关程度。你的相关系数肯定小,难以有理想结果!
㈢ 用神经网络研究期货价格
中国的垃圾教育。我说怎么这么多研究生找不到工作呢。
㈣ 什么是BP神经网络
误差反向传播(Error Back Propagation, BP)算法
1、BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。
1)正向传播:输入样本->输入层->各隐层(处理)->输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层
其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
注2:权值调整的过程,也就是网络的学习训练过程(学习也就是这么的由来,权值调整)。
2、BP算法实现步骤(软件):
1)初始化
2)输入训练样本对,计算各层输出
3)计算网络输出误差
4)计算各层误差信号
5)调整各层权值
6)检查网络总误差是否达到精度要求
满足,则训练结束;不满足,则返回步骤2)
3、多层感知器(基于BP算法)的主要能力:
1)非线性映射:足够多样本->学习训练
能学习和存储大量输入-输出模式映射关系。只要能提供足够多的样本模式对供BP网络进行学习训练,它便能完成由n维输入空间到m维输出空间的非线性映射。
2)泛化:输入新样本(训练时未有)->完成正确的输入、输出映射
3)容错:个别样本误差不能左右对权矩阵的调整
4、标准BP算法的缺陷:
1)易形成局部极小(属贪婪算法,局部最优)而得不到全局最优;
2)训练次数多使得学习效率低下,收敛速度慢(需做大量运算);
3)隐节点的选取缺乏理论支持;
4)训练时学习新样本有遗忘旧样本趋势。
注3:改进算法—增加动量项、自适应调整学习速率(这个似乎不错)及引入陡度因子
㈤ bp神经网络预测黄金期货可信吗
有一定的风险 还是选择一种稳妥起见的比较好
㈥ BP神经网络预测,预测结果与样本数据的理解。
输入节点数是3,说明输入向量的行数m=3,你给的样本只有1行,是不是不全?输出节点只有一个,说明每3个输入数据对应一个预测的输出数据。
其实样本数量很少,就不需要训练那么多次了,训练了也白训练。你问“这样的预测结果代表着什么?”,你也没说这些数据在现实中是什么,怎么会知道呢。
㈦ 为什么我的BP神经网络的预测输出结果几乎是一样的呢
最大的可能性是没有归一化。具体原因见下:
下面这个是经典的Sigmoid函数的曲线图:
如果不进行归一化,则过大的输入x将会导致Sigmoid函数进入平坦区,全部趋近于1,即最后隐层的输出全部趋同。输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。
使用matlab进行归一化通常使用mapminmax函数,它的用法:
[Y,PS] = mapminmax(X,YMIN,YMAX)——将数据X归一化到区间[YMIN,YMAX]内,YMIN和YMAX为调用mapminmax函数时设置的参数,如果不设置这两个参数,这默认归一化到区间[-1, 1]内。标准化处理后的数据为Y,PS为记录标准化映射的结构体。我们一般归一化到(0,1)区间内。
㈧ 请问如何用matlab建立人工bp神经网络模型,来对期货未来的价格变化作出预测急求,在线等。谢谢大神。。
这些事其实很多年前就有很多人做,但是成功的好像没有。国内期货市场成交量比较弱,甚至还达不到弱有效市场假说,所以利用概率分布和遗传算法很难找到长久的赢利方法。
㈨ BP算法、BP神经网络、遗传算法、神经网络这四者之间的关系
这四个都属于人工智能算法的范畴。其中BP算法、BP神经网络和神经网络
属于神经网络这个大类。遗传算法为进化算法这个大类。
神经网络模拟人类大脑神经计算过程,可以实现高度非线性的预测和计算,主要用于非线性拟合,识别,特点是需要“训练”,给一些输入,告诉他正确的输出。若干次后,再给新的输入,神经网络就能正确的预测对于的输出。神经网络广泛的运用在模式识别,故障诊断中。BP算法和BP神经网络是神经网络的改进版,修正了一些神经网络的缺点。
遗传算法属于进化算法,模拟大自然生物进化的过程:优胜略汰。个体不断进化,只有高质量的个体(目标函数最小(大))才能进入下一代的繁殖。如此往复,最终找到全局最优值。遗传算法能够很好的解决常规优化算法无法解决的高度非线性优化问题,广泛应用在各行各业中。差分进化,蚁群算法,粒子群算法等都属于进化算法,只是模拟的生物群体对象不一样而已。