① GB/T 18043《贵金属首饰含量的无损检测方法X射线荧光光谱法》
和你说哦~~免费的很多都不完整!我之前下了个不到一半!你看看下面的吧!很完整!
标准编号:GB/T 18043-2000
标准名称:贵金属首饰含量的无损检测方法 X射线荧光光谱法
标准状态:现行
英文标题:Precious metal jewellery content non-damaged test method--X-ray fluorescence spectrometry
替代情况:被GB/T 18043-2008代替
实施日期:2000-9-1
颁布部门:中华人民共和国国家质量监督检验检疫总局
内容简介:本标准规定了贵金属首饰含量的X射线荧光光谱无损检测方法及要求。本标准适用于首饰及其他工艺品中贵金属金、银、铂等表层含量的测定及委托检验(需征得委托方及被委托方同意)和生产企业内部管理(不包括生产质量控制)。
出处: http://www.csres.com/detail/58233.html
下载:http://www.csres.com/upload/qy/in/GBT18043-2000.PDF
② 贵金属检测一般需要检测哪些元素
根据国标的要求,看你要检测什么纯度的那种贵金属。
可以咨询国家有色金属及电子材料分析测试中心
③ 钯金怎么检验
GB/T11066.6-2009 金化学分析方法镁、镍、锰和钯量的测定火焰原子吸收光谱法
GB/T11066.7-2009 金化学分析方法银、铜、铁、铅、锑、铋、钯、镁、锡、镍、锰和铬量的测定火花原子发射光谱法
GB/T11066.8-2009 金化学分析方法银、铜、铁、铅、锑、铋、钯、镁、镍、锰和铬量的测定乙酸乙酯萃取-电感耦合等离子体原子发射光谱法
GB/T15072.1- 贵金属合金化学分析方法金、铂、钯合金中金量的测定硫酸亚铁电位滴定法
GB/T15072.15- 贵金属合金化学分析方法金、银、钯合金中镍、锌和锰量的测定电感耦合等离子体原子发射光谱法
GB/T15072.3- 贵金属合金化学分析方法金、铂、钯合金中铂量的测定高锰酸钾电流滴定法
GB/T15072.4- 贵金属合金化学分析方法钯、银合金中钯量的测定二甲基乙二醛肟重量法
GB/T15072.5- 贵金属合金化学分析方法金、钯合金中银量的测定碘化钾电位滴定法
GB/T15072.6- 贵金属合金化学分析方法铂、钯合金中铱量的测定硫酸亚铁电流滴定法
GB/T15072.8- 贵金属合金化学分析方法金、钯、银合金中铜量的测定硫脲析出EDTA络合返滴定法
GB/T17418.3-2010 地球化学样品中贵金属分析方法第3部分:钯量的测定硫脲富集-石墨炉原子吸收分光光度法
GB/T17418.6-2010 地球化学样品中贵金属分析方法第6部分:铂量、钯量和金量的测定火试金富集-发射光谱法
GB/T19720-2005 铂合金首饰铂、钯含量的测定氯铂酸铵重量法和丁二酮肟重量法
GB/T21198.3-2007 贵金属合金首饰中贵金属含量的测定ICP光谱法第3部分:钯合金首饰钯含量的测定采用钇为内标
GB/T23275-2009 钌粉化学分析方法铅、铁、镍、铝、铜、银、金、铂、铱、钯、铑、硅量的测定辉光放电质谱法
GB/T23276-2009 钯化合物分析方法钯量的测定二甲基乙二醛肟析出EDTA络合滴定法
GB/T23277-2009 贵金属催化剂化学分析方法汽车尾气净化催化剂中铂、钯、铑量的测定分光光度法
GB/T23613-2009 锇粉化学分析方法镁、铁、镍、铝、铜、银、金、铂、铱、钯、铑、硅量的测定电感耦合等离子体原子发射光谱法
GB/T4698.23-1996 海绵钛、钛及钛合金化学分析方法氯化亚锡--碘化钾分光光度法测定钯量
HJ509-2009 车用陶瓷催化转化器中铂、钯、铑的测定电感耦合等离子体发射光谱法和电感耦合等离子体质谱法
QB/T2382-1998 亮金水亮钯金水试验方法
SH/T0684-1999 分子筛和氧化铝基催化剂中钯含量测定法(原子吸收光谱法)
SJ/Z1091-1976 镀钯溶液典型分析方法
YS/T362-2006 纯钯中杂质素的发射光谱分析
YS/T372.1-2006 贵金属合金素分析方法银量的测定碘化钾电位滴定法
YS/T372.3-2006 贵金属合金素分析方法钯量的测定丁二肟析出EDTA络合滴定法
YS/T563-2009 贵金属合金化学分析方法铂钯铑合金中钯量、铑量的测定丁二肟重量法、氯化亚锡分光光度法
YS/T745.3-2010 铜阳极泥化学分析方法第3部分:铂量和钯量的测定火试金富集-电感耦合等离子体发射光谱法
④ 蒸馏分离-催化光度法测定锇、钌
方法提要
RuO4和OsO4具有挥发性,利用该特性,用蒸馏的方法使它们与伴生金属分离。选择适当的氧化剂或吸收剂,使锇和钌再分离,然后利用锇、钌对Ce4+-As3+系统的催化作用进行催化光度法测定。固定时间法测得的吸光度A的负对数与锇(或钌)的浓度有良好的线性关系,适用于锇、钌含量低的试样,测定的浓度范围为锇0.5~2.5ng/mL,钌0.2~1ng/mL。固定浓度法测得的反应时间t的倒数与锇(或钌)的浓度有良好的线性关系,适用于锇、钌含量较高的试样,测定的浓度范围为锇2~16ng/mL,钌1~5ng/mL。
蒸馏装置见图64.1。
图64.1 锇钌蒸馏器(数字单位:mm)
试剂
氢氧化钠。
过氧化钠。
乙醇。
硫酸。
盐酸。
氯化钠溶液(20g/L)。
高锰酸钾溶液(15g/L)。
溴酸钠溶液(15g/L)。
氯化钠溶液(200g/L)。
锇吸收液(0.05mol/LAs2O3-2mol/LH2SO4溶液)称取10.0g三氧化二砷于250mL烧杯中,加入5gNaOH及约20mL水,加热溶解后移入1000mL容量瓶,加水稀释至700mL左右,加入230mL(1+1)H2SO4,冷却,用水稀释至刻度,摇匀。
锇稀释液吸取100mL锇吸收液于200mL容量瓶中。加入8mL乙醇,用水稀释至刻度,摇匀。
钌吸收液称取0.15g亚硫酸钠,置于1000mL容量瓶中,加600mL水,加100mL100g/L硫酸汞溶液,立即摇匀。加入40mL乙醇,再加入222mL(1+1)H2SO4,用水稀释至刻度,摇匀。
三氧化二砷溶液(0.05mol/LAs2O3-1mol/LH2SO4溶液)称取10.0gAs2O3,加入5gNaOH及约20mL水,加热溶解后,用水稀释至约700mL,加入118mL(1+1)H2SO4,冷却,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
硫酸汞溶液(50g/LHgSO4-1mol/LH2SO4)称取25g硫酸汞,溶于500mL1mol/LH2SO4。
硫酸铈铵溶液称取11g硫酸铈铵,溶于500mL1mol/LH2SO4中。
钌标准储备溶液ρ(Ru)=100.0μg/mL准确称取32.92mg光谱纯氯钌酸铵[(NH4)2Ru(H2O)Cl5],置于100mL烧杯中,用1mol/LH2SO4使之溶解,并将其移入100mL容量瓶中,用1mol/LH2SO4稀释至刻度,摇匀。
钌标准溶液ρ(Ru)=1.0ng/mL用钌标准储备溶液(100.0μg/mL)逐级用1mol/LH2SO4稀释配制。
锇标准储备溶液ρ(Os)=100.0μg/mL准确称取23.08mg光谱纯氯钌酸铵[(NH4)2OsCl6],置于100mL烧杯中,用1mol/LH2SO4使之溶解,并将其移入100mL容量瓶中,用1mol/LH2SO4稀释至刻度,摇匀。
锇标准溶液ρ(Os)=20.0ng/mL用锇标准储备溶液(100.0ng/mL)逐级用1mol/LH2SO4稀释配制。
钌的校准曲线
(1)固定时间法
移取0.00mL、0.02mL、0.04mL、0.06mL、0.08mL、0.12mL、0.16mL、0.20mL钌标准溶液(1.0ng/mL),置于25mL比色管中。用1mol/LH2SO4补足至2mL。加入2mL三氧化二砷溶液、1mL硫酸汞溶液,摇匀。再加入1mL硫酸铈铵溶液,摇匀。在恒温水浴或室温放置一定时间(以校准曲线中的最高钌量之吸光度值降至0.3附近时所需时间来确定),以水作参比,用1cm比色皿,在波长420nm处测量溶液的吸光度A和试剂空白吸光度A0,以lg(A0/A)对钌量作图,绘制校准曲线。
(2)固定浓度法
移取0.00mL、0.05mL、0.10mL、0.20mL、0.30mL、0.40mL锇标准溶液(1.0ng/mL),置于25mL比色管中。补加1mol/LH2SO4至2mL。加入2mL三氧化二砷溶液、1mL硫酸汞溶液,摇匀。置于35℃恒温水浴中20min(若含量高可降低温度),迅速加入1.00mL已恒温至相同温度的硫酸铈铵溶液,摇匀;同时立即启动秒表计时,将溶液移入1cm比色皿中,在波长420nm处测量溶液的吸光度降至0.3所需的时间,求出1/t值。对钌量作图,绘制校准曲线。
锇的校准曲线
(1)固定时间法
移取0.00mL、0.20mL、0.40mL、0.60mL、0.80mL、1.00mL钌标准溶液(20.0ng/mL),置于25mL比色管中,补加锇稀释液至5mL。加入2mL三氧化二砷溶液、1mL硫酸汞溶液,摇匀。再加入1mL硫酸铈铵溶液,以下步骤同钌的固定时间法校准曲线。
(2)固定浓度法
移取0.00mL、0.20mL、0.40mL、0.60mL、0.80mL、1.20mL、1.60mL钌标准溶液(100.0ng/mL),置于25mL比色管中,补加锇稀释液至5mL。加入2mL三氧化二砷溶液、1mL硫酸汞溶液,摇匀。置于35℃恒温水浴中20min,以下步骤同钌的固定浓度法校准曲线。
分析步骤
称取5g(精确至0.1g)试样于50mL高温坩埚中,加入2倍的过氧化钠,混匀,再覆盖约2倍的过氧化钠,放入已升至700~750℃的高温炉中熔融20~30min取出,冷却。若试样中含硫、碳或有机物较多,用过氧化钠直接熔融会使坩埚炸裂,因此要先焙烧。在焙烧过程中,锇易氧化为OsO4挥发损失。为减少损失,加少量NaOH作Os的保护剂,从低温缓慢升至500℃并焙烧10~20min,就能使硫、碳或有机物分解完全。焙烧完毕,取出,趁热在不断摇动下撒入过氧化钠直到剧烈反应停止。再分次加入约15g过氧化钠,再在700~750℃熔融15~20min,取出坩埚,冷却,放入预先盛有200mL水的500mL烧杯中浸取。剧烈反应后,用水洗净坩埚,并将浸取物用水洗入蒸馏瓶中,加入几粒玻璃珠。连接蒸馏瓶与支管,并在瓶颈及蒸馏瓶和支管连接之磨口处滴加数滴(1+1)H2SO4。在第一吸收管中加入25mL钌吸收液,第二吸收管中加入25mL锇吸收液。将吸收管与导管连接,从漏斗中慢慢加入120mL(1+1)H2SO4,摇动蒸馏瓶使沉淀完全溶解。再加入10mL高锰酸钾溶液和10mL溴酸钠溶液及4~5滴氯化钠溶液。洗净漏斗,关闭活塞。
将蒸馏瓶架于可调电炉上,第二吸收管浸入冷水槽中。加热蒸馏,待溶液沸腾后适当调节炉温。蒸馏进行到第二吸收管内溶液增至37~40mL时,迅速取下导管和吸收系统,将吸收管置于水中冷却至室温,用水稀释至50mL刻度,摇匀。第一吸收管中溶液测定钌,第二吸收管中溶液测定锇。
(1)钌的测定
移取1.0~2.0mL第一吸收管中溶液于干的25mL比色管中,不足2mL时,用1mol/LH2SO4补足至2mL。以下步骤同校准曲线,用固定时间法或固定浓度法测定。
(2)锇的测定
移取1.0~5.0mL第二吸收管中溶液于干的25mL比色管中,补加锇稀释液至5mL,以下步骤同校准曲线,用固定时间法或固定浓度法测定。
钌、锇含量的计算参见式(64.2)。
注意事项
1)坩埚的选择:按照传统方法,用过氧化钠熔解贵金属时,通常使用铁坩埚。测定1×10-9以上的锇、钌时,使用铁坩埚对其影响不大。测定1×10-9以下的锇钌时,其空白值对测定结果影响很大,尤其对0.0x×10-9的锇、钌,基本上是测不准确的。试验发现,高铝坩埚的空白值远远低于铁坩埚。
2)Na2O2的选择:通常使用的Na2O2中锇、钌空白值较高。由于Na2O2用量大,氧化性强,实际提纯困难较大。故应选用空白值低的Na2O2产品。
3)蒸馏装置:蒸馏器必须是全部磨口玻璃连接,保持干净。任何有机物都会把四氧化钌还原成不挥发的钌的低价化合物而沉积在容器上、导管壁上。连接处不能涂油脂类的润滑剂,可用硫酸或高氯酸代替之。
4)氧化剂的选用:氧化还原电位因配合物的配位体不同而改变,氧化剂的氧化还原电位也受溶液中的酸度和其他物质的影响而改变。在蒸馏锇、钌所使用的氧化剂中,人们通常选择价格便宜、氧化能力强的KMnO4。对于痕量分析,KMnO4的氧化能力及空白值均能满足需要。对于超痕量分析,KMnO4的空白值已经超出我们的要求。对几种主要的氧化剂进行空白值检查,结果见表64.13。
表64.13 不同氧化剂的空白值 (wB∶10-9)
从表64.13可以看出,K2Cr2O7、NaBrO3、KIO4的空白值都比较低。但是,用K2Cr2O7或KIO4作氧化剂时,钌的回收率只有70%,锇的回收率还不到70%;用NaBrO3作氧化剂时,也会分解出大量的Br,干扰测定。
所以选用高锰酸钾和溴酸钠混合氧化剂用于蒸馏锇、钌。这种混合氧化剂既能提高锇、钌的回收率,又不会析出干扰测定的物质。
5)酸度对反应速度的影响:选用0.5mol/L、1.5mol/L、2mol/L硫酸介质,考察其对锇、钌反应速度的影响。结果看出,体系酸度越小,反应速度越快,灵敏度越高。当体系酸度到达0.5mol/L时,虽然反应速度大大提高,整个体系却处于不稳定状态,而且曲线线性关系不好。因此,采用1mol/L的硫酸酸度。
6)As、Ce用量对锇钌催化As3+-Ce4+反应速度的影响:As3+-Ce4+反应速度随As3+浓度的增大而加快,即反应速度随[As3+]/[Ce4+]比值的增加而增加。当增加到一定程度时,曲线向下弯曲,线性不好。因此选定的砷用量为0.05mol/L的As2O32mL,铈用量为0.02mol/L的硫酸铈铵1.00mL。
7)温度、时间对反应速度的影响:一般来说,温度高则催化时间短,温度低则催化时间长。如果温度过高,反应速度过快,曲线陡峭,线性关系被破坏,浓度范围也相应缩小。温度太低,反应速度缓慢,曲线斜率太小。需通过实验确定合适的反应温度和反应时间。准确的测定要求反应温度控制在±0.2℃以内。
⑤ 贵金属是什么
贵金属,是黄金、白银、钌、铑、钯、锇、铱、铂等八种金属的总称,这些金属都有美丽的色泽,且化学属性稳定。以下是各种贵金属的特性:
黄金:在空气中加热直到熔化都不发生氧化。金不溶于3种强酸,但溶于王水.氰化钾(钠)溶液。
白银:银是贵金属中耐蚀性最差的金属。在潮湿空气中,它容易被硫及硫化物腐蚀,生成硫化银。加热时溶于盐酸.硫酸.硝酸.王水。银与汞发生反应,生成汞齐合金,用于补牙。
钌:钌是极好的催化剂,用于氢化、异构化、氧化和重整反应中。纯金属钌用途很少。它是铂和钯的有效硬化剂。用它制造电接触合金,以及硬磨硬质合金等。
铑:耐蚀性较高,甚至不溶于沸腾的王水。但是氢溴酸微腐蚀铑,潮湿的碘和次氯酸钠也能腐蚀铑。
钯:耐硫化氢腐蚀,常温下表面不晦暗。氢氟酸.高氯酸.磷酸.醋酸常温下不腐蚀钯,但盐酸.硫酸.氢溴酸可轻微腐蚀钯。硝酸.氯化铁.次氯酸盐和湿的卤素会快速腐蚀钯。
锇:用来制造超高硬度的合金。锇同铑、钌、铱或铂的合金,用作电唱机、自来水笔尖及钟表和仪器中的轴承。
铱:贵金属中最耐蚀的金属。不与普通酸(包括热硫酸.王水)作用。在次氯酸溶液中稍被腐蚀。
铂:铂由于有很高的化学稳定性(除王水外不溶于任何酸,碱)和催化活性,因此,应用很广。可与钴合制强磁体。多用来制造耐腐蚀的化学仪器,如各种反应器皿、蒸发皿、坩埚、电极、铂网等,铂和铂铑合金常用作热电偶,来测定1200~1750℃的温度。还可用于制造首饰。
⑥ 任务贵金属分析方法的选择
任务描述
贵金属元素由于其性质的特殊性,在样品溶解、分离富集等方面与一般元素有很大的不同之处。通过本次任务的学习,加深对贵金属元素性质的了解,能根据矿石的特性、分析项目的要求及干扰元素的分离等情况正确选择分离和富集方法,学会基于被测试样中贵金属元素含量的高低不同以及对分析结果准确度的要求不同而选用适当的分析方法,能正确填写样品流转单。
任务分析
一、贵金属在地壳中的分布、赋存状态及其矿石的分类
贵金属元素是指金、银和铂族(铑、钌、钯、锇、铱、铂)共8 种元素,在元素周期表中位于第五、六周期的第Ⅷ族和第IB副族中。由于镧系收缩使得第二过渡元素(钌、铑、钯、银)与第三过渡元素(锇、铱、铂、金)的化学性质相差很小,因此贵金属元素的化学性质十分相近。
铂族元按其密度不同,分为轻重两族。钌、铑、钯为轻族;锇、铱、铂为重族。
金在自然界大都以自然金形式存在,也能和银、铜和铂族元素形成天然合金。根据最新研究成果,金的地壳丰度值仅为1 ng/g。金矿床中伴生的有用矿产很多。在脉金矿或其他原生金矿床中,常伴生有银、铜、铅、锌、锑、铋和钇等;在砂金矿床中,常伴生有金红石、钛铁矿、白钨矿、独居石和刚玉等矿物。此外,在有色金属矿床中,也常常伴生金。金的边界品位一般为1 g/t。一般自然金里的金含量大于80%,还有少量的铜、铋、银、铂、锑等元素。
银在地壳中的平均含量为1×10-7,在自然界多以硫化物形式存在,单独存在的辉银矿(Ag2S)很少遇见,而且主要伴生在铜矿、铅锌矿、铜铅锌矿等多金属硫化物矿床和金矿床中。在开采和提炼铜、铅、锌、镍和金主要组分时,可顺便回收银。一般含银品位达到5~10 g/t即有工业价值。
铂族元素在自然界分布量很低,铂在地壳中的平均丰度仅为5×10-9,钯为5×10-8。它们和铁、钴、镍在周期表上同属第Ⅷ族,因此也与铁、钴、镍一样,具有亲硫性。铂族元素常与铁元素共生,它们主要富集在与超基性岩和基性岩有关的铜镍矿床、铬铁矿床和砂矿床内。铜镍矿床中所含铂族元素以铂、钯为主,其次是铑、钌、锇、铱。铬铁矿中所含铂族元素以锇、钌、铱为主。铂族元素之间,以及它们与铁、钴、镍、铜、金、银、汞、锡、铅等元素之间能构成金属互化物。在自然界存在自然铂和自然钯。自然铂含铂量为84%~98%,其余为铁,及少量钯、铱、镍、铜等。自然钯含钯量为86.2%~100%,同时含有少量铂、铱、铑等。自然钌很少见,我国广东省发现的自然钌中含有91.1%~100% 的钌。铂族元素还可以与非金属性较强的第Ⅵ主族元素氧、硫、硒、碲及第V主族元素砷、锑、铋等组成不同类型的化合物。目前已知的铂族元素矿物有120多种。在一些普通金属矿物(如黄铜矿、磁黄铁矿、镍黄铁矿、黄铁矿、铬铁矿等)以及普通非金属矿物(如橄榄石、蛇纹石、透辉石等)中也可能含有微量铂族元素。
铂族元素的共同特性是具有优良的抗腐蚀性、稳定的热电性、高的抗电火花蚀耗性、高温抗氧化性能以及良好催化作用,故在工业上应用很广泛,特别是在国防、化工、石油精炼、电子工业上不可缺少的重要原料。
二、贵金属的分析化学性质
(一)化学性质
1.金
金具有很高的化学稳定性,即使在高温条件下也不与氧发生化学作用,这大概就是在自然界中能够以自然金甚至是以微小金颗粒存在的重要原因。金与单一的盐酸、硫酸、硝酸和强碱均不发生化学反应。金能够溶解在盐酸和硝酸的混合酸中,其中在王水中的溶解速率是最快的。用于分析化学中的金标准溶液通常就是以王水溶解纯金来制备,但需要用盐酸反复蒸发除去多余的硝酸或氮氧化合物。在有氧化剂存在的盐酸中,如 H2O2、KMnO4、KClO3、KBrO3、KNO3和溴水等,金也能够很好被溶解,这主要是由于盐酸与氧化剂相互作用产生新生态的氯气同金发生反应所致。
2.银
银有较高的化学稳定性,常温下不与氧发生化学作用,在自然界同样能够以元素形态存在。当与其他元素发生化学反应时,通常形成正一价的银化合物。在某些条件下也可生成正二价化合物,例如AgO和AgF2,但这些化合物不稳定。
金属银易溶于硝酸生成硝酸银,也易溶于热的浓硫酸生成硫酸银,而不溶于冷的稀硫酸中。银在盐酸和王水中并不会很快溶解,原因在于初始反应生成的Ag-以AgCl沉淀沉积在金属表面而形成一层灰黑色的保护膜,阻止了银的进一步溶解。但是如果在浓盐酸中加入少量的硝酸,银的溶解是比较快的。这是因为形成的 AgCl 又生成可溶性的[AgCl2]-配离子。这一反应对含银的贵金属合金材料试样的溶解是很有用的。银与硫接触时,会生成黑色硫化银;与游离卤作用生成相应的卤化物。银饰品在空气中长久放置或佩戴后失去光泽常常与其表面上硫化物及其氯化物的形成有关。在有氧存在时,银溶解于碱金属氰化物而生成[Ag(CN)2]-配离子。银在氧化剂参与下,如有Fe3+时也能溶于酸性硫脲溶液而形成复盐。
3.铂族金属
铂族金属在常温条件下是十分稳定的,不被空气腐蚀,也不易与单一酸、碱和很多活泼的非金属元素反应。但是在确定的条件下,它们可溶于酸,并同碱、氧和氯气相互作用。铂族金属的反应活性在很大程度上依赖于它们的分散性以及同其他元素,即合金化的元素形成中间金属化合物的能力。
就溶解能力而言,铂族金属粉末较海绵状的易于溶解,而块状金属的溶解是非常缓慢的。与无机酸的反应,除钯外,铂族金属既不溶于盐酸也不溶于硝酸。钯与硝酸反应生成Pd(NO3)2。海绵锇粉与浓硝酸在加热条件下反应生成易挥发的OsO4。钯、海绵铑与浓硫酸反应,生成相应的PdSO4、Rh2(SO4)3。锇与热的浓硫酸反应生成OsO4或OsO2。铂、铱、钌不与硫酸反应。王水是溶解铂、钯的最好溶剂。但王水不能溶解铑、铱、锇和钌,只有当它们为高分散的粉末和加热条件下可部分溶解。在有氧化剂存在的盐酸溶液中(如H2O2、Cl2等)于封管的压力条件下,所有的铂族金属都能被很好地溶解。
通常,碱溶液对铂族金属没有腐蚀作用,但当加入氧化剂时则有较强的相互作用。如OsO4就能够在碱溶液中用氯酸盐氧化金属锇来获得。在氧化剂存在条件下,粉末状铂族金属与碱高温熔融,反应产物可溶于水(对于Os和Ru)、盐酸、溴酸和盐酸与硝酸的混合物中,由此可将难溶的铂族金属转化为可溶性盐类。高温熔融时,常用的混合熔剂有:NaOH+NaNO3(或NaClO3)、K2CO3+KNO3、BaO2+BaNO3、NaOH+Na2O2和Na2O2等。利用在硝酸盐存在条件下的NaOH或KOH的熔融、利用Na2O2的熔融以及利用BaO2的高温烧结方法通常被认为是将铂族金属如铑、铱、锇、钌转化成可溶性化合物的方便途径。
在碱金属氯化物存在条件下,铂族金属的氯化作用同样是将其转化成可溶性化合物的最有效途径之一。
(二)贵金属分析中常用的化合物和配合物
1.贵金属的卤化物和卤配合物
贵金属的卤化物或卤配合物是贵金属分析中最重要的一类化合物,尤其是它们的氯化物或氯配合物。因为贵金属分析中大多数标准溶液的制备主要来自这些物种;铂族金属与游离氯反应,即氯化作用,被广泛用于分解这些金属;更重要的是在铂族金属的整个分析化学中几乎都是基于在卤配合物水溶液中所发生的反应,包括分离和测定它们的方法。
铂族金属配合物种类繁多,能与其配位的除卤素外,还有含O、S、N、P、C、As等配位基团,常见的有
2.贵金属氧化物
金、银的氧化物在分析上并不重要。金的氧化物有Au2O3、Au2O,Au2O很不稳定,与水接触分解为Au2O3和Au。用硝酸汞、乙酸盐、酒石酸盐等还原剂还原Au(Ⅲ)可得到Au2O。Au(Ⅲ)与NaOH作用时,生成Au(OH)3沉淀。通常,Au(OH)3以胶体形态存在,所形成的胶粒直径一般为80~200 nm。
向银溶液中小心加入氨溶液时可形成白色的氢氧化银。当以碱作用时则有棕色的氧化银析出。氧化银呈碱性,能微溶于碱并生成[Ag(OH )2]-;在300℃条件下分解为 Ag和O2。
铂族金属及其化合物在空气中灼烧可形成各种组分的氧化物。由于许多氧化物不稳定,或者稳定的温度范围比较窄,或者某些氧化物具有挥发性,因此在用某些分析方法测定时要十分注意。例如,一些采用重量法的测定需在保护气氛中灼烧成金属后称重。Os(Ⅷ)、Ru(Ⅷ)的氧化物易挥发,这也是与其他贵金属分离的最好方法。铂族金属对氧的亲和力顺序依次为:Pt<Pd<Ir<Ru<Os。铂的亲和力最差,但粉末状的铂能很好与氧结合。贵金属的氧化物在溶液中多呈水合氧化物形式存在。
3.贵金属的硫化物
形成硫化物是贵金属元素的共性,但难易程度不同。其中IrS生成较难,而PdS、AgS较容易形成。贵金属硫化物均不溶于水,其溶解度按下列顺序依次减小:Ir2S3、Rh2S3、PtS2、RuS2、OsS2、PdS、Au2S3、Ag2S。在贵金属的氯化物或氯配合物(银为硝酸盐)溶液中,通入H2S气体或加入Na2S溶液可得到相应的硫化物沉淀。
4.贵金属的硝酸盐和亚硝酸盐化合物或配合物
在贵金属的硝酸盐中,AgNO3是最重要的化合物。分析中所用的银标准溶液都是以AgNO3为初始基准材料配制的。其他贵金属的硝酸盐及硝基配合物不稳定,易水解,在分析中较少应用。铂族金属的亚硝基配合物是一类十分重要的配合物。铂族金属的氯配合物与NaNO2在加热条件下反应,生成相应的亚硝基配合物。这些配合物很稳定,在pH 8~10的条件下煮沸也不会发生水解。利用这种性质可进行贵金属与贱金属的分离。
三、贵金属矿石矿物的取样和制样
含有贵金属元素的样品在分析之前必须具备两个条件:①样品应是均匀的;②样品应具有代表性。否则,无论分析方法的准确度如何高或分析人员的操作如何认真,获得的分析结果往往是毫无意义的。此外,随着科学技术的发展,贵金属资源被广泛应用于各工业部门和技术领域,由于贵金属资源逐渐减少,供需矛盾日渐突出,其价格日趋昂贵,因此对分析结果准确性的要求比其他金属要高。
贵金属矿石矿物的取样、加工是为了得到具有较好代表性和均匀性的样品,使所测试样品中贵金属的含量能够较真实地反映原矿的情况,避免取样带来的误差。贵金属在自然界中的赋存状态很复杂,又由于贵金属元素的含量较低,故分析试样的取样量必须满足两个因素:①分析要求的精度;②试样的均匀程度,即取出的少量试样中待测元素的平均含量要与整个分析试样中的平均含量一致。实际上贵金属元素在矿石中的分布并不均匀,往往集中在少数矿物颗粒中,要达到取出的试样与总试样完全一致的要求是很难做到的。因此,只能在满足所要求的分析误差范围内进行取样,增加取样量,分析误差可能会减小。试样中贵金属矿物的破碎粒度与取样量有很大关系,粒度愈大,试样愈不均匀,取样量也应愈大,因此加工矿物试样时应尽可能磨细。为了达到一定的测量精度,除满足上述取样量的条件外,还应满足测定方法的灵敏度。
一般的矿样,可按常规方法取样、制样。金多以自然金的形式存在于矿石矿物中,它的粒度变化较大,大的可达千克以上,而微小颗粒甚至在显微镜下都难以分辨。金的延展性很好,它的破碎速度比脉石的破碎速度慢,因此对未过筛的和残留在筛缝中的样品部分绝对不能弃之,此部分大多含有自然金。金矿石的取样与加工一般按切乔特经验公式进行。对于比较均匀的样品,K取值为0.05,一般金矿石样品,K取值为0.6~1.5。
对于较难加工的金矿石,在棒磨之前加一次盘磨碎样并磨至0.154mm,因为棒磨机的作用是用钢棒冲击和挤压岩石再磨细金粒,能满足一般金粒较细的试样所需的破碎粒度。含有较粗金粒的试样,用棒磨机只能使金粒压成片状或带状,达不到破碎的目的。而盘磨机是利用搓压的作用力使石英等硬度较大的物料搓压金粒来达到破碎的目的。
在金矿样的加工过程中,应注意以下几个方面:
(1)如果矿样量在1kg以下,碎样时应磨至200目。一半送分析用,一半作为副样。如果矿样量在1 kg以上,按加工流程进行破碎,作基本分析的样品重量不应少于500~600 g。
(2)若样品中含有明金时,应增设80目过筛和筛上收金的过程。
(3)对于1∶20万区域化探水系沉淀物样品,应将原分析样混匀后分取40g,用盘磨粉碎至200目,混匀后作为金的测定样。
(4)在过筛和缩分过程中,任何时间都不能弃去筛上物和损失样品。
(5)所使用的各种设备每加工完一个样品后必须彻底清扫干净,并认真检查在缝隙等处有无金粒残留。
(6)矿样经棒磨机粉碎至200 目后,送分析之前必须再进行混匀,以防止因金的密度大在放置时间过久或运送过程中金下沉而导致样品不均匀。
由于金在矿石中的不均匀性,要制取有代表性、供分析用的矿样,应尽可能地增大矿石取样量。在磨样过程中,对分离出粗粒的金应分别处理。其他贵金属矿样的取样与加工要比金矿石的容易。
为了获得准确的分析结果,贵金属试样在分析之前,取样与样品的加工,试样的分解将是整个分析工作中的重要环节。另一方面,由于在大多数的分析方法中,获得的分析结果常常是通过与已知的标准物质的含量,包括标准溶液和标准样品进行比较获得的,因此,准确的分析结果同样也依赖于贵金属标准溶液的准确制备。
四、贵金属矿样的样品处理技术
贵金属矿石矿物的分解有其特殊性,是分析化学中的难题之一。因为多数贵金属具有很强的抗酸、碱腐蚀的特点,常用的无机溶剂和分解技术难以分解。
含铑、铱和钌等试样,在常温、常压,甚至较高温度、压力下用王水也难以分解。
砂铂矿多由超基性岩体中的铬-铂矿风化次生而成,其密度及硬度极高、化学惰性极强,在高温、高压条件下溶解也较慢。
锇铱矿是以锇和铱为主的天然合金,晶格类型的差别较大(铱为等轴晶系,锇为六方晶系)。含锇高时称为铱锇矿,呈钢灰色至亮青铜色;含铱高时称为锇铱矿,呈明亮锡白色。它们的密度都很大,性脆且硬,含铱、钌高时磁性均较强,锇高时相反。化学性质也都很稳定,于王水中长时间煮沸难以被分解。
为了分解这些难溶物料,需要引入一些特殊的技术,如焙烧预处理技术、碱熔融技术、加压酸消解技术等。
(一)焙烧预处理方法
贵金属在矿石中除以自然金、自然铂等形式存在外,还以各种金属互化物形式存在,并常伴生在硫化铜镍矿和其他硫化矿中。用王水分解此类矿样时,由于硫的氧化不完全,易产生元素硫,并吸附金、铂、钯等,使测定结果偏低,尤其对金的吸附严重,故需要先进行焙烧处理,使硫氧化为SO2而挥发。焙烧温度的控制是很重要的,温度过低,分解不完全;温度过高,会烧结成块,影响分析测定。常用的焙烧温度为600~700℃,焙烧时间与试样量和矿石种类有关,一般为1~2h。不同硫化矿的焙烧分解情况不同,其中黄铁矿最易分解,其次是黄铜矿,最难分解的是方铅矿。以下是几种贵金属矿石的焙烧处理方法。
(1)含砷金矿的焙烧。先将矿石置于高温炉中,升温至400℃恒温2h,使大部分砷分解、挥发,继续升温至650℃,使硫和剩余的少量砷完全挥发。于矿石中加入NH4NO3、Mg(NO3)2等助燃剂,可提高焙烧效率,缩短焙烧时间。如果金矿中砷的含量在0.2% 以上,且砷含量比金含量高800倍的条件下焙烧时,会生成砷和金的一种易挥发的低沸点化合物而使金损失,此时的焙烧温度应控制在650℃以下。当金矿石中硅含量较高时,加入一定量NH4HF2可分解SiO2。
(2)含银硫化矿的焙烧。先将矿石置于高温炉中,升温至650℃,恒温2h,使硫完全挥发。当矿石中硅含量较高时,即使加入NH4HF2,由于焙烧过程中生成难溶的硅酸银,使测定结果严重偏低。为此,用酸分解焙烧试样时,加入HF以分解硅酸银,可获得满意的结果。
(3)含铂族元素硫化矿的焙烧。与含金硫化矿的焙烧方法相同。
(4)含锇硫化矿的焙烧。试样进行焙烧时,易氧化为OsO4形式挥发损失,于焙烧炉中通入氢气,硫以H2S形式挥发;或按10∶1∶1∶1比例将矿石、NH4Cl、(NH4)2CO3、炭粉混合后焙烧,可加速硫的氧化,对锇起保护作用。
(二)酸分解法
贵金属物料的酸分解法是最常用的方法,操作简便,不需特殊设备。常用的溶剂是王水,它所产生的新生态氯具有极强的氧化能力,是溶解金矿和某些铂族矿石的有效试剂。溶解金时可在室温下浸泡,加热使溶解加速。溶解铂、钯时,需用浓王水并加热。此外,分解金矿的试剂很多,如HCl-H2O2、HCl-KClO3、HCl-Br2等。被硅酸盐包裹的矿物,应在王水中加少量HF或其他氟化物分解硅酸盐。酸分解方法不能用于含铑、铱矿石的分解,此类矿石只有在高温、高压的特定条件下强化溶解才能完全溶解。
(三)碱熔法
固体试剂与试样在高温条件下熔融反应可达到分解的目的。最常用的是过氧化钠熔融法,几乎可以分解所有含贵金属的矿石,但对粗颗粒的锇铱矿很难分解完全,常需要用合金碎化后再碱熔才能分解完全。本法的缺点是引入了大量无机盐,对坩埚腐蚀严重,又带入了大量铁、镍。使用镍坩埚还能带入微量贵金属元素。此法多用于无机酸难以分解的矿石。
五、贵金属元素的分离和富集方法
贵金属元素在岩石矿物中的含量较低,因此,在测定前对其进行分离富集往往是必要且关键的一步。贵金属元素的分离和富集有两种方法;一种是干法分离和富集——火法试金;一种是湿法分离和富集——将样品先转为溶液,然后采用沉淀、吸附、离子交换、萃取、色层等方法进行分离富集贵金属与贱金属分离,主要有共沉淀分离法、溶剂萃取法、离子交换分离法、活性炭分离富集法、泡沫塑料富集法及液膜分离富集法等。目前应用最广泛的是火试金法、泡沫塑料法、萃取法。具体方法详见任务2、任务3、任务4的相关内容。
六、贵金属元素的测定方法
(一)化学分析法
1.重量法测定金与银
将铅试金法得到的金、银合粒,称其总量。经“分金后”得到金粒,称重。两者重量之差为银的重量。
为了减少金在灰吹中的损失和便于分金,在熔炼时通常加入毫克量的银。如果试样中含金量较高,加入的银量必须相应增加,以达金量的3倍以上为宜。低于此数时,分金不完全,且银不能完全溶解,影响测定结果。
在实际应用中,不同含金量可按表7-1所示的银与金的比例加入银,可满意地达到分金效果。
表7-1 银与金的比例
如合粒中含银量低、金量高时,可称取两份试样,一份不加银,所得合粒称重,为金银合量。另一份加银,分金后测金。二者重量之差为银量。亦可先将金、银合粒称重,再加银灰吹,然后进行分金,测得金量。差减法得银量。
分金可采用热硝酸(1∶7),此时合粒中的银、钯以及部分铂溶解,而金不溶并呈一黑色的整粒留下来。如果留的下金粒带黄色,则表示分金不完全,应当取出,补加适量银,包在铅片中再灰吹,然后分金。
用硝酸(1∶7)分金后,金粒中还残留有微量银,可再用硝酸(1∶1)加热数分钟除去。
2.滴定法
在贵金属元素的滴定法中,主要利用贵金属离子在溶液中进行的氧化还原反应、形成稳定配合物反应、生成难溶化合物沉淀或被有机试剂萃取的化合反应。被滴定的贵金属离子本身多数是有颜色的,而且存在着复杂的化学形态和化学平衡反应,故导致滴定法的应用有一定的局限性。
金的滴定法主要依据氧化还原反应,包括碘量法、氢醌法、硫酸铈滴定法、钒酸铵滴定法及少数催化滴定法和原子吸收-碘量法联合的分析方法。其中碘量法和氢醌法在我国应用最普遍,它们与活性炭或泡塑吸附分离联用,方法的选择性较好,且可测得微量至常量的金,已成为经典的测定方法或实际生产中的例行测定规程。由于样品的成分的复杂性,故用活性炭吸附分离-碘量法测定金时,还应针对试样的特殊性采取相应的预处理手段。例如,含铅、银高的试样,可加入5~7g硫酸钠,煮沸使二氯化铅转化为硫酸铅沉淀过滤除去,银用盐酸溶液(2+98)洗涤,可避免氯化银沉淀以银的氯配离子形式进入溶液中而被活性炭吸附。含铁、铅、铜、锌的试样,在滴定时加入0.5~1 g氟化氢铵可掩蔽50mg铁、铅,3~5mL的EDTA溶液(25g/L)可掩蔽大量铅、铜、锌,但需立即加入碘化钾,以避免Au(Ⅲ)被还原为Au(Ⅰ)。含硫高时,于马弗炉中500℃温度下焙烧3h后再于650~700℃恒温1~2h,可避免金的分析结果偏低。含锑的试样,用氢氟酸蒸发2次,可消除其对金的影响。试样中含铂和钯时,会与碘化钾形成红色和棕色碘化物,且消耗硫代硫酸钠,可于滴定时加入5mL硫氰酸钾溶液(250g/L),使之形成稳定的配合物而消除干扰。用碘量法测定金的误差源于多种因素:金标准溶液的稳定性、活性炭吸附金的酸度、水浴蒸发除氮氧化物的条件、淀粉指示剂用量、滴定前碘化钾的加入量、分取试液和滴定液的浓度、标定量的选择等,因此应予以注意。
关于银的化学滴定法,应用最普遍的是硫氰酸钾(铵)和碘化钾沉淀滴定法,其次是硫代硫酸钠返滴定法、硫酸亚铁氧化还原滴定法和二硫腙萃取滴定法等。
硫氰酸钾滴定法测定银:将试金所得的金、银合粒用稀硝酸溶解其中的银,以硫酸铁铵为指示剂,用硫氰酸钾标准溶液滴定至淡红色,即为终点。其主要反应式如下:
Ag++KCNS→K++AgCNS↓
Fe3++3KCNS→3K++Fe(CNS)3
在铂族金属的滴定中,以莫尔盐还原Pt(Ⅳ),用钒酸铵返滴定法或二乙基二硫代氨基甲酸钠滴定法的条件苛刻,选择性差,不能用于组成复杂的试样分析中。于pH为3~4酸性介质中,长时间煮沸的条件下,Pt(Ⅳ)能与EDTA定量络合,在乙酸-乙酸钠缓冲介质中,用二甲酚橙作指示剂,乙酸锌滴定过量的EDTA,可测定5~30mg Pd。利用这一特性,采用丁二肟分离钯,用酸分解滤液中的丁二肟,可测定含铂、钯的冶金物料中的铂。Pd(Ⅱ)的滴定测定方法较多,常见的是利用形成难溶化合物沉淀和稳定配合物的反应。在较复杂的冶金物料中,采用选择性试剂掩蔽钯,二甲酚橙作指示剂,锌(铅)盐滴定析出与钯等量的EDTA测定钯的方法较多。
(二)仪器分析法
贵金属在地壳中的含量很低,因此各种仪器分析方法在贵金属的测定中获得了非常广泛的应用。主要有可见分光光度法、原子吸收光谱法、发射光谱法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法等。具体的应用请参阅本项目的任务2、任务3、任务4的相关内容。
七、贵金属矿石的分析任务及其分析方法的选择
贵金属矿石的分析项目主要是金、银、铑、钌、钯、锇、铱、铂含量的测定,除精矿外,一般矿石中贵金属的含量都比较低,因此,在选择分析方法时,灵敏度是需要重点考虑的因素。一般,银的测定主要用原子吸收光谱法和可见分光光度法,且10 g/t以上含量的不需要预富集,可直接测定。可见分光光度法、原子吸收光谱法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法在金的测定上都获得了广泛的应用。金的测定一般都需要采取预富集手段。铑、钌、钯、锇、铱、铂在矿石中含量甚微,因此对方法的灵敏度要求较高。目前,电感耦合等离子体质谱法在铑、钌、钯、锇、铱、铂的测定的应用已经越来越广泛和成熟。另外光度法、电感耦合等离子体发射光谱法也在铑、钌、钯、锇、铱、铂的测定中发挥了重要作用。
技能训练
实战训练
1.学生实训时按每组5~8人分成几个小组。
2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成贵金属矿石委托样品从样品验收到派发样品检验单工作。
3.填写附录一中质量表格1、表格2。
⑦ 锍试金分离富集-电感耦合等离子体质谱法测定铂、钯、铑、铱、锇、钌、金
方法提要
试样与混合熔剂于1100℃熔融,铂族元素进入镍扣与基体分离。用盐酸溶解镍扣,滤出不溶于盐酸的铂族元素硫化物,在封闭溶样器中用王水溶解,ICP-MS法测定,其中锇用同位素稀释法测定。取样20g时测定下限为0.01~0.2ng/g。
仪器和装置
电感耦合等离子体质谱仪。
试金用高温炉、300mL黏土坩埚及铸铁模具。
负压抽滤装置(滤膜孔径0.45μm)
PFA封闭溶样器容积10mL。
试剂
锍试金熔剂见本章64.2.1.2。
盐酸。
硝酸。
王水 盐酸和硝酸铵(3+1)比例混合均匀。
氯化亚锡溶液(1mol/L,介质6mol/LHCl),制备后一个月内使用。
碲共沉淀剂ρ(Te)=0.5mg/mL称取0.1072g碲酸钠(Na2TeO4·2H2O)溶解于100mL3mol/LHCl。
钌、铑、钯、铱、铂、金的单元素标准储备溶液ρ(B)=100.0μg/mL
铂标准储备溶液ρ(Pt)=100.0μg/mL称取0.1000g光谱纯(99.99%)铂丝,置于100mL烧杯中,加入15mLHCl、5mLHNO3,盖上表面皿,放在电热板上加热溶解后,加入5滴200g/LNaCl溶液,在水浴上蒸干。用盐酸赶硝酸3次。加入10mLHCl和20mL水,加热溶解后移入1000mL容量瓶中,补加90mLHCl,用水稀释至刻度,摇匀。
钯标准储备溶液ρ(Pd)=100.0μg/mL称取0.1000g光谱纯钯丝(99.99%),置于100mL烧杯中,加入15mLHCl、5mLHNO3,盖上表面皿,放在电热板上加热溶解后,加入5滴200g/LNaCl溶液,在水浴上蒸干。用盐酸赶硝酸3次。加入10mLHCl和20mL水,加热溶解后移入1000mL容量瓶中,补加90mLHCl,用水稀释至刻度,摇匀。
铑标准储备溶液ρ(Rh)=100.0μg/mL称取35.93mg光谱纯氯铑酸铵[(NH4)3RhCl6]置于100mL烧杯中,加入20mL水,加20mLHCl,溶解后移入100mL容量瓶中,用水稀释至刻度,摇匀。
铱标准储备溶液ρ(Ir)=100.0μg/mL称取57.35mg光谱纯氯铱酸铵[(NH4)2IrCl6],置于100mL烧杯中,加入25mL水,再加25mLHCl,温热使其溶解,取下冷却。移入250mL容量瓶中,补加25mLHCl,用水稀释至刻度,摇匀。
钌标准储备溶液ρ(Ru)=100.0μg/mL称取82.23mg光谱纯氯钌酸铵[(NH4)2Ru(H2O)Cl5],置于100mL烧杯中,用水润湿,加入0.5g硫酸亚铁铵、5mL(1+1)H2SO4,搅拌使之溶解,盖上表面皿,于中温电热板上加热至微冒白烟。取下冷却。用水洗烧杯壁及表面皿,再加热至冒白烟并继续保持5min,取下,冷却后用1mol/LH2SO4移入250mL容量瓶中,并稀释至刻度,摇匀。
金标准储备溶液ρ(Au)=100.0μg/mL称取纯金0.1000g,置于50mL烧杯中,加入10mL新配制的王水,放在沸水浴上溶解并蒸发至小体积。移入1000mL容量瓶中,加入100mL王水,用水稀释至刻度,摇匀备用。
组合元素标准储备溶液ρ(B)=10.0μg/mL由钌、铑、钯、铱、铂、金的单元素标准储备溶液制备组合稀释配制,介质(1+9)王水,存放期限为一年。
组合元素标准工作溶液根据试样中的实际含量稀释为适当浓度的混合元素工作溶液,一般为ρ(B)=5.0ng/mL,(1+9)王水介质。保存期限为两周。
190Os稀释剂 从美国橡树岭实验室购置的稀释剂190Os金属粉末,190Os丰度为97.04%,192Os丰度为1.61%,制备为锇含量适当的溶液(约100ng/mL),介质为0.5mol/LNaOH。用同位素稀释法,加入普通锇标准溶液,准确标定稀释剂溶液中锇的浓度。也可采用其他适当的锇稀释剂。
内标元素混合溶液含In、Tl各10.0ng/mL,在测定过程中通过三通在线引入。
仪器调试溶液含Co、In、U各1.0ng/mL。
分析步骤
(1)试样处理
称取10~20g(精确至0.1g)试样,置于锥形瓶中,加入混合熔剂,充分摇动混匀后,转入黏土坩埚中,准确加入适量锇稀释剂(含锇量与试样中锇相当),覆盖少量熔剂,放入已升温至1100℃的高温炉中熔融1.5h。取出坩埚,将熔融体注入铸铁模具,冷却后,取出镍扣,转入加有水的烧杯中,待扣松散成粉末后,加入60mLHCl,加热溶解至溶液变清且不再冒泡为止。加入0.5~1mL碲共沉淀剂、1~2mLSnCl2溶液,继续加热半小时出现沉淀并放置数小时使碲沉淀凝聚,然后用0.45μm滤膜进行负压抽滤,用(1+4)HCl和水洗涤沉淀数次。将沉淀和滤膜一同转入PFA封闭溶样器中,加入1~2.5mL王水,封闭。于100℃左右溶解2~3h,冷却后转入10~25mL比色管,用水稀释至刻度,摇匀待测。
(2)上机测定
ICP-MS的操作和数据获取参数见表64.2。
表64.2 等离子体质谱仪工作参数(以TJAPQ-ExCellICP-MS为例)
测量同位素选择:
101Ru/115In、103Rh/115In、105Pd/115In(注:含铜高的样品,应选用106Pd或108Pd)、193Ir/205Tl、195Pt/205Tl、197Au/205Tl、192Os/190Os。
点燃等离子体后稳定15min后,用仪器调试溶液进行最佳化,要求仪器灵敏度达到计数率大于2×104s-1。同时以CeO/Ce为代表的氧化物产率小于2%,以Ce2+/Ce为代表的双电荷离子产率小于5%。
以高纯水为空白,用组合标准工作溶液对仪器进行校准,然后测定试样溶液。在测定的全过程中,通过三通在线引入内标溶液。
在测定过程中,计算机始终在监测内标元素的信号强度,如发生变化(可能因仪器漂移或试样溶液基体的变化引起),则对所有与此内标相关联的元素进行相应补偿。
计算机根据标准溶液中各元素的已知浓度和测量信号强度建立各元素的校准曲线公式,然后根据未知试样溶液中各元素的信号强度,以及预先输入的试样称取量和制得试样溶液体积,直接给出Ru、Rh、Pd、Ir、Pt和Au的含量。同时给出试样溶液中的192Os/190Os比值,根据以下同位素稀释法计算公式计算试样中Os的含量:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:w(Os)为试样中Os的质量分数,ng/g;R为测得的192Os/190Os比值;mS为稀释剂加入量,ng;K为试样中Os的原子质量与稀释剂中Os的原子质量之比(使用本190Os稀释剂时,该值为1.10015);AS为稀释剂中192Os的同位素丰度(本稀释剂为0.0161);BS为稀释剂中190Os的同位素丰度(本稀释剂为0.9704);AX为试样中192Os的同位素丰度,其值为0.41;BX为试样中190Os的同位素丰度,其值为0.264;m为称取试样的质量,g。
计算机给出的测定结果没有扣除流程空白。每批试样必须同时进行数份空白分析,最终随同试样上机测定,根据测定结果进行适当的空白修正。
注意事项
1)本法不适用于含铼高的试样中锇的测定,因为高铼试样中可能存在较高含量的放射成因187Os,而本法是基于普通同位素组成的锇进行稀释法测定。
2)对于超痕量铂族元素的分析,试剂空白是主要的制约因素,作为捕集剂的镍是试剂空白的主要来源,对于低含量试样的准确测定影响很大。羰基镍的空白很低,可以满足要求。若使用一般氧化镍或金属镍试剂,需预先测定其铂族元素空白值进行筛选,并进行必要的提纯。具体提纯方法为:按锍镍试金流程空白处理,其中Ni2O3加入量为15g,硫粉10g,其余试剂量不变。高温熔融后,溶解镍扣,碲共沉淀两次。用0.45μm滤膜过滤除去铂族元素硫化物沉淀。提纯后的镍溶液在电热板上加热浓缩至较小体积,加入Na2CO3中和至pH8,生成碳酸镍沉淀,水洗至中性,离心,弃清液,将沉淀转入瓷皿,于105℃烘干,再放入高温炉,于500℃焙烧2h,得黑色Ni2O3粉末。提纯后Ni2O3用于超痕量贵金属分析后,再回收每次溶扣后滤液循环使用。在此循环流程中,镍粉中金的含量可能逐渐增高,故按此法提纯的氧化镍不能用于金的分析。
3)本法对金的回收率约为80%。可能的原因为盐酸溶解镍扣时,部分金被溶解,且不能随金属碲完全共沉淀。可根据同时分析的标准物质的结果进行适当校正。
4)用同位素稀释法测定锇是必要的。一方面不能确保封闭溶解过程没有锇的泄漏损失,另一方面由于不同氧化程度的锇在ICP技术中灵敏度的巨大差异,采用标准溶液标化会造成分析结果的极大误差。为了便于保存,锇的标准溶液一般制备为低价(+4价),其灵敏度与其他元素相当。而试样在制备过程中可能全部或部分被氧化为高价(+8价),其灵敏度会有不同程度的提高。在同位素稀释法中,从试金开始加入稀释剂,经历了高温熔融,锍镍捕集,HC1溶扣,王水溶渣全流程,试样中锇与加入的稀释剂充分平衡,保持了一致的氧化态,从而保证了分析结果的可靠性。
5)为了提高回收率,在溶解锍镍扣后加入Te使少量溶解的贵金属随碲共沉淀。
⑧ 锍镍试金分离富集-电感耦合等离子体质谱法测定铂、钯、铑、铱、锇、钌、金
方法提要
试样与混合熔剂于1100℃熔融,铂族元素进入镍扣与基体分离。用盐酸溶解镍扣,滤出不溶于盐酸的铂族元素硫化物,在封闭溶样器中用王水溶解,ICP-MS测定,其中锇用同位素稀释法测定。取样20g时测定下限为0.01~0.2ng/g。
仪器和装置
电感耦合等离子体质谱仪。
试金用高温炉、300mL黏土坩埚及铸铁模具。
负压抽滤装置滤膜孔径0.45μm。
PFA封闭溶样器容积10mL。
试剂
锍镍试金熔剂及配方见表84.40。
表84.40 锍镍试金熔剂配比(单位:g)
盐酸。
硝酸。
王水盐酸和硝酸按(3+1)比例混合均匀。
氯化亚锡溶液(1mol/L,介质6mol/LHCl)制备后一个月内使用。
碲共沉淀剂ρ(Te)=0.5mg/mL称取0.1072g碲酸钠(Na2TeO4·2H2O)溶解于100mL3mol/LHCl。
钌、铑、钯、铱、铂、金的单元素标准储备溶液ρ(B)=100.0μg/mL。
铂标准储备溶液ρ(Pt)=100.0μg/mL称取0.1000g光谱纯(99.99%)铂丝,置于100mL烧杯中,加入15mLHCl、5mLHNO3,盖上表面皿,放在电热板上加热溶解后,加入5滴200g/LNaCl溶液,在水浴上蒸干。用盐酸赶硝酸3次。加入10mLHCl和20mL水,加热溶解后移入1000mL容量瓶中,补加90mLHCl,用水稀释至刻度,摇匀。
钯标准储备溶液ρ(Pd)=100.0μg/mL称取0.1000g光谱纯钯丝(99.99%),置于100mL烧杯中,加入15mLHCl、5mLHNO3,盖上表面皿,放在电热板上加热溶解后,加入5滴200g/LNaCl溶液,在水浴上蒸干。用盐酸赶硝酸3次。加入10mLHCl和20mL水,加热溶解后移入1000mL容量瓶中,补加90mLHCl,用水稀释至刻度,摇匀。
铑标准储备溶液ρ(Rh)=100.0μg/mL称取38.56mg光谱纯氯铑酸铵〔(NH4)3RhCl6·1/2H2O〕置于100mL烧杯中,加入20mL水,加20mLHCl,溶解后移入100mL容量瓶中,用水稀释至刻度,摇匀。
铱标准储备溶液ρ(Ir)=100.0μg/mL称取57.35mg光谱纯氯铱酸铵〔(NH4)2IrCl6〕,置于100mL烧杯中,加入25mL水,再加25mLHCl,温热使其溶解,取下冷却。移入250mL容量瓶中,补加25mLHCl,用水稀释至刻度,摇匀。
钌标准储备溶液ρ(Ru)=100.0μg/mL称取8.22mg光谱纯氯钌酸铵(NH4)2Ru(H2O)Cl5,置于100mL烧杯中,用水润湿,加入0.5g硫酸亚铁铵、5mL(1+1)H2SO4,搅拌使之溶解,盖上表面皿,于中温电热板上加热至微冒白烟。取下冷却。用水洗烧杯壁及表面皿,再加热至冒白烟并继续保持5min,取下,冷却后用1mol/LH2SO4移入500mL容量瓶中,并稀释至刻度,摇匀。
金标准储备溶液ρ(Au)=100.0μg/mL称取纯金0.1000g,置于50mL烧杯中,加入10mL新配制的王水,放在沸水浴上溶解并蒸发至小体积。移入1000mL容量瓶中,加入100mL王水,用水稀释至刻度,摇匀备用。
组合元素标准储备溶液ρ(B)=10.0μg/mL由钌、铑、钯、铱、铂、金的单元素标准储备溶液制备组合稀释配制,介质(1+9)王水,存放期限为一年。
组合元素标准工作溶液根据试样中的实际含量稀释为适当浓度的混合元素工作溶液,一般为ρ(B)=5.00ng/mL,(1+9)王水介质。保存期限为两周。
190Os稀释剂从美国橡树岭实验室购置的稀释剂190Os金属粉末,190Os丰度为97.04%,192Os丰度为1.61%,制备为锇含量适当的溶液(约100ng/mL),介质为0.5mol/LNaOH。用同位素稀释法,加入普通锇标准溶液,准确标定稀释剂溶液中锇的浓度。也可采用其他适当的锇稀释剂。
内标元素混合溶液含In、Tl各10ng/mL,在测定过程中通过三通在线引入。
仪器调试溶液含Co、In、U各1.0ng/mL。
分析步骤
1)试样处理。称取10~20g(精确至0.1g)试样,置于锥形瓶中,加入混合熔剂,充分摇动混匀后,转入黏土坩埚中,准确加入适量锇稀释剂(含锇量与试样中锇相当),覆盖少量熔剂,放入已升温至1100℃的高温炉中熔融1.5h。取出坩埚,将熔融体注入铸铁模具,冷却后,取出镍扣,转入加有水的烧杯中,待扣松散成粉末后,加入60mLHCl,加热溶解至溶液变清且不再冒泡为止。加入0.5~1mL碲共沉淀剂。1~2mLSnCl2溶液,继续加热半小时出现沉淀并放置数小时使碲沉淀凝聚,然后用0.45μm滤膜进行负压抽滤,用(1+4)HCl和水洗涤沉淀数次。将沉淀和滤膜一同转入PFA封闭溶样器中,加入1~2.5mL王水,封闭。于100℃左右溶解2~3h,冷却后转入10~25mL比色管,用水稀释至刻度,摇匀待测。
2)上机测定。ICP-MS的仪器操作和数据获取参数见表84.41。
表84.41 电感耦合等离子体质谱仪工作参数
注:以TJAPQ-ExCellICPMS为例。
测量同位素选择:101Ru/115In、103Rh/115In、105Pd/115In(注:含铜高的样品,应选用106Pd或108Pd)、193Ir/205Tl、195Pt/205Tl、197Au/205Tl、192Os/190Os。
点燃等离子体后稳定15min后,用仪器调试溶液进行最佳化,要求仪器灵敏度达到计数率大于2×104s-1。同时以CeO/Ce为代表的氧化物产率<2%,以Ce2+/Ce为代表的双电荷离子产率<5%。
以高纯水为空白,用组合标准工作溶液对仪器进行校准,然后测定试样溶液。在测定的全过程中,通过三通在线引入内标溶液。
在测定过程中,计算机始终在监测内标元素的信号强度,如发生变化(可能因仪器漂移或试样溶液基体的变化引起),则对所有与此内标相关联的元素进行相应补偿。
计算机根据标准溶液中各元素的已知浓度和测量信号强度建立各元素的校准曲线公式,然后根据未知试样溶液中各元素的信号强度,以及预先输入的试样称取量和制得试样溶液体积,直接给出Ru、Rh、Pd、Ir、Pt和Au的含量。同时给出试样溶液中的192Os/190Os比值,根据以下同位素稀释法计算公式计算试样中Os的含量:
岩石矿物分析第四分册资源与环境调查分析技术
式中:w(Os)为试样中Os的质量分数,ng/g;R为测得的192Os/190Os比值;mS为稀释剂加入量,ng;K为试样中Os的原子质量与稀释剂中Os的原子质量之比(使用本190Os稀释剂时,该值为1.10015);AS为稀释剂中192Os的同位素丰度(本稀释剂为0.0161);BS为稀释剂中190Os的同位素丰度(本稀释剂为0.9704);AX为试样中192Os的同位素丰度,其值为0.41;BX为试样中190Os的同位素丰度,其值为0.264;m为称取试样的质量,g。
计算机给出的测定结果没有扣除流程空白。每批试样必须同时进行数份空白分析,最终随同试样上机测定,根据测定结果进行适当的空白修正。
192Os存在192Pt的同量异位素干扰,按下式校正:
岩石矿物分析第四分册资源与环境调查分析技术
式中:I192Os为192Os的计数率;I192为192质量数的总计数率;0.023为192Pt和195Pt两种同位素的天然同位素丰度比值。
注意事项
1)本法不适用于含铼高的试样中锇的测定,因为高铼试样中可能存在较高含量的放射成因187Os,而本法是基于普通同位素组成的锇进行稀释法测定。
2)对于超痕量铂族元素的分析,试剂空白是主要的制约因素,作为捕集剂的镍是试剂空白的主要来源,对于低含量试样的准确测定影响很大。羰基镍的空白很低,可以满足要求。若使用一般氧化镍或金属镍试剂,需预先测定其铂族元素空白值进行筛选,并进行必要的提纯。具体提纯方法为:按锍镍试金流程空白处理,其中Ni2O3加入量为15g,硫粉10g,其余试剂量不变。高温熔融后,溶解镍扣,碲共沉淀两次。用0.45μm滤膜过滤除去铂族元素硫化物沉淀。提纯后的镍溶液在电热板上加热浓缩至较小体积,加入Na2CO3中和至pH8,生成碳酸镍沉淀,水洗至中性,离心,弃清液,将沉淀转入瓷皿,于105℃烘干,再放入高温炉,于500℃焙烧2h,得黑色Ni2O3粉末。提纯后Ni2O3用于超痕量贵金属分析后,再回收每次溶扣后滤液循环使用。在此循环流程中,镍粉中金的含量可能逐渐增高,故按此法提纯的氧化镍不能用于金的分析。
3)本法对金的回收率约为80%。可能的原因为盐酸溶解镍扣时,部分金被溶解,且不能随金属碲完全共沉淀。可根据同时分析的标准物质的结果进行适当校正。
4)用同位素稀释法测定锇是必要的。一方面不能确保封闭溶解过程没有锇的泄漏损失,另一方面由于不同氧化程度的锇在ICP技术中灵敏度的巨大差异,采用标准溶液标化会造成分析结果的极大误差。为了便于保存,锇的标准溶液一般制备为低价(+4价),其灵敏度与其他元素相当。试样在制备过程中可能全部或部分被氧化为高价(+8价),其灵敏度会有不同程度的提高。在同位素稀释法中,从试金开始加入稀释剂,经历了高温熔融,锍镍捕集,HCl溶扣,王水溶渣全流程,试样中锇与加入的稀释剂充分平衡,保持了一致的氧化态,从而保证了分析结果的可靠性。
5)为了提高回收率,在溶解锍镍扣后加入Te使少量溶解的贵金属随碲共沉淀。
⑨ 什么是贵金属
贵金属主要指金、银和铂族金属(钌、铑、钯、锇、铱、铂)等8种金属元素。这些金属大多数拥有美丽的色泽,具有较强的化学稳定性,一般条件下不易与其他化学物质发生化学反应。
贵金属投资分为实物投资和电子盘交易投资。其中实物投资是指投资人在对贵金属市场看好的情况下,低买高卖赚取差价的过程。也可以是在不看好经济前景的情况下所采取的一种避险手段,以实现资产的保值增值。
电子盘交易是指根据黄金、白银等贵金属市场价格的波动变化,确定买入或卖出,这种交易一般都存在杠杆,可以用较小的成本套取较大的回报。
随着通货膨胀威胁的加剧,全球经济形势的动荡,以及世界金融危机的爆发,具有避险保值功能的贵金属投资需求呈现出爆发式的增长趋势。由于贵金属的变现性和保值性高,可以抵御通胀带来的币值变动和物价上涨。
(9)贵金属钌的测定扩展阅读:
贵金属投资的政策法规:
正规贵金属交易中心指出,由于前期国务院发布的38号文整顿交易市场,随后央行等五部委联合发文,严格禁止除了上海黄金交易所和上海期货交易所以外任何机构和个人设立黄金交易所,或黄金交易平台。
根据相关文件,2011年国务院发布38号文《国务院关于清理整顿各类交易场所切实防范金融风险的决定》,38号文指出,除依法经国务院或国务院期货监管机构批准设立从事期货交易的交易场所外,
任何单位一律不得以集中竞价、电子撮合、匿名交易、做市商等集中交易方式进行标准化合约交易。从事保险、信贷、黄金等金融产品交易的交易场所,必须经国务院相关金融管理部门批准设立。
目前国内贵金属投资以可以使用交易平台的现货白银和部分实物黄金为主,其中不乏许多非法的平台,如许多以美元报价的伦敦金、伦敦银等地下盘,多年来也出现过许多诈骗的案例,需要投资者谨慎。
⑩ 锍试金富集-微堆中子活化测定铂、钯、铱、铑、锇、钌
方法提要
用镍锍试金富集铂族元素,镍扣用(1+1)HCl溶解后制备靶样,送入反应堆中辐照。经适当时间的冷却,用γ能谱仪测量被测核素的特征γ峰。
方法适用于地球化学勘查水系沉积物、土壤、岩石等样品中铂、钯、钌、铑、锇、铱的测定。方法的检出限w(B):Pt0.6×10-9、Pd0.46×10-9、Ru0.6×10-9、Rh0.05×10-9、Os0.27×10-9、Ir0.006×10-9。
仪器与装置
微型核反应堆中子通量1×1012n·cm-2·s-1。
快速气动样品传输系统。
数字多道γ能谱仪系统。
同轴高纯锗探测器对60Co1332keV相对效率大于30%,分辨率为小于2.0keV,峰康比>50∶1。
平面锗探测器。
低本底铅室。
试剂
盐酸。
锍试金试剂见64.2.1.2锍试金。
铂、钯、铱、铑、钌标准储备溶液ρ(B)=100.0μg/mL配制方法同64.3.1。
锇标准储备溶液ρ(Os)=100.0μg/mL称取0.1154g光谱纯氯锇酸铵[(NH4)2Os(H2O)Cl5]置于200mL烧杯中,加入0.2~0.3mg(NH4)2Fe(SO4)2和25mL水,待盐类溶解后,加25mLH2SO4,在电热板上加热至微冒白烟,再继续5min。取下,冷却,用水稀释至500mL。
混合标准溶液由标准储备溶液逐级稀释,并配制成Pd、Pt为5.0μg/mL,Ir、Os、Rh、Ru为1.0μg/mL混合工作溶液。
分析步骤
称取20~50g(精确至0.1g)试样,按64.2.1.2锍试金的操作步骤处理,将粉化后的镍扣用盐酸溶解后,取下,稍冷,趁热用微孔(0.45μm)滤膜过滤,用(2+98)热HCl溶液洗涤残渣,再用热水冲洗残渣,将滤膜烘干,用处理后的聚乙烯薄膜包装成1cm×1cm的靶样,装入样品盒,用快速气动装置送入反应堆中辐照。辐照后的试样经过适当时间的冷却,用γ能谱仪测量被测核素的特征γ峰,由IAE/SPA分析软件进行谱分析和数据处理,相对法计算分析结果。测量条件见表64.3,铂族元素分析所用核参数见表64.4。
表64.3 照射、测量条件
注:104Rh是用平面锗探测器测量的,其他均用高纯锗探测器测量。
表64.4核素参数
注意事项
1)试金扣要粉碎得细一些,掌握好溶解时间,时间太短,扣中的杂质溶解不完全,对测定造成影响;时间太长,贵金属硫化物长期与热HCl溶液接触,不可避免地造成了贵金属的损失。
2)金对铂的干扰的校正:
测定Pt是用核素199Au的158keVγ峰,其核反应如下:
198Pt(n,γ)→199Pt→199Au,而197Au(n,γ)→198Au(n,γ)→199Au
显然Au产生的199Au对Pt测定有正干扰。因此应用金标准,跟着试样一起照射,计算Au对Pt的干扰系数k,用以下公式对Pt进行校正:
w(Pt)=w'(Pt)—k×w(Au)式中:w(Pt)为校正后Pt含量;k为Au对Pt的干扰系数;w'(Pt)为校正前Pt含量;w(Au)为Au的含量。